Imaging Collagen in Scar Tissue: Developments in Second Harmonic Generation Microscopy for Biomedical Applications (original) (raw)

Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy

Scientific Reports, 2017

Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter ρ of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl 4-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization. Collagens play a central role in the formation of fibrils networks involved in the architecture of tissues and organs. In extracellular matrixes (ECM), the physical compressive and tensile strains generated by cell traction are key mechanisms involved in the long-range ordering and remodeling of collagen fibrils 1,2. These fibrils, consisting of long and filamentous polymers of collagen molecules, are arrays of axial and lateral supramolecular assembly of quarter-staggered collagen molecules resulting in 67 nm periodic striation observed at ultrastructural level with transmission electron microscopy. While much is known about the different hierarchical level of fibrillogenesis, comparatively little is known about how collagen fibrils assemble together into the diverse supramolecular arrangements found in the body. Moreover, remodeling of collagen fibrils involved in several pathologies encompassing fibrosis, cancer, bone and several connective tissues diseases also awaits a precise 3D description. Label-free second harmonic generation (SHG) process relies on a nonlinear optical interaction with hyperpolarizable non centrosymetric endogenous fibrillar proteins like collagen and myosin causing scattered coherent radiation at twice the fundamental frequency 3,4. Thus, it has proved to be an extremely beneficial contrast mechanism for label-free imaging of these endogenous molecules in situ, in vivo, in physiological as well as in disease state. Polarization dependence second harmonic generation (P-SHG) microscopy that enables quantification of

Interpreting Second-Harmonic Generation Images of Collagen I Fibrils

Biophysical Journal, 2005

Fibrillar collagen, being highly noncentrosymmetric, possesses a tremendous nonlinear susceptibility. As a result, second-harmonic generation (SHG) microscopy of collagen produces extremely bright and robust signals, providing an invaluable tool for imaging tissue structure with submicron resolution. Here we discuss fundamental principles governing SHG phase matching with the tightly focusing optics used in microscopy. Their application to collagen imaging yields several biophysical features characteristic of native collagen structure: SHG radiates from the shell of a collagen fibril, rather than from its bulk. This SHG shell may correspond to the supporting element of the fibril. Physiologically relevant changes in solution ionic strength alter the ratio of forward-to-backward propagating SHG, implying a resulting change in the SHG shell thickness. Fibrillogenesis can be resolved in immature tissue by directly imaging backward-propagating SHG. Such findings are crucial to the design and development of forthcoming diagnostic and research tools.

044.JID-3D imaging of collagen remodeling scar.pdf

Hypertrophic scars (HTS), frequently seen after traumatic injuries and surgery, remain a major clinical challenge because of the limited success of existing therapies. A significant obstacle to understanding HTS etiology is the lack of tools to monitor scar remodeling longitudinally and noninvasively. We present an in vivo, label-free technique using polarization-sensitive optical frequency domain imaging for the 3D, longitudinal assessment of collagen remodeling in murine HTS. In this study, HTS was induced with a mechanical tension device for 4e10 days on incisional wounds and imaged up to 1 month after device removal; an excisional HTS model was also imaged at 6 months after injury to investigate deeper and more mature scars. We showed that local retardation and degree of polarization provide a robust signature for HTS. Compared with normal skin with heterogeneous local retardation and low degree of polarization, HTS was characterized by an initially low local retardation, which increased as collagen fibers remodeled, and a persistently high degree of polarization. This study demonstrates that polarization-sensitive optical frequency domain imaging offers a powerful tool to gain significant biological insights into HTS remodeling by enabling longitudinal assessment of collagen in vivo, which is critical to elucidating HTS etiology and developing more effective HTS therapies.

Second-Harmonic Imaging of Collagen

Methods in Molecular Biology™, 2006

Molecules that have no center of symmetry are able to convert light to its second harmonic, at twice the frequency and half the wavelength. This only happens with any efficiency at very high light intensities such as are given by a pulsed laser, and because the efficiency of the process depends on the square of the intensity, it will be focal plane selective in exactly the same way as two-photon excitation of fluorescence. Because of its unusual molecular structure and its high degree of crystallinity, collagen is, by far, the strongest source of second harmonics in animal tissue. Because collagen is also the most important structural protein in the mammalian body, this provides a very useful imaging tool for studying its distribution. No energy is lost in second-harmonic imaging, so the image will not fade, and because it is at a shorter wavelength than can be excited by two-photon fluorescence, it can be separated easily from multiple fluorescent probes. It is already proving useful in imaging collagen with high sensitivity in various tissues, including cirrhotic liver, normal and carious teeth, and surgical repair of tendons.

3Dimensional imaging of collagen using second-harmonic generation

2002

Collagen is the most important structural protein of the animal body. Its unique triple-helix structure and extremely high level of crystallinity make it exceptionally efficient in generating the second harmonic of incident light, and we show here how this leads to a novel mode of microscopy of immediate practical significance in medicine and biology. In particular, it provides sensitive and highresolution information on collagen distribution, discriminates between type I and type III collagen, and allows both a greater understanding of and a sensitive test for cirrhosis of the liver. Future research applications could include wound healing and hereditary collagen diseases such as osteogenesis imperfecta.

Characterization of Collagen I Fiber Thickness, Density, and Orientation in the Human Skin In Vivo Using Second-Harmonic Generation Imaging

Photonics

The assessment of dermal alterations is necessary to monitor skin aging, cancer, and other skin diseases and alterations. The gold standard of morphologic diagnostics is still histopathology. Here, we proposed parameters to distinguish morphologically different collagen I structures in the extracellular matrix and to characterize varying collagen I structures in the skin with similar SAAID (SHG-to-AF Aging Index of Dermis, SHG—second-harmonic generation; AF—autofluorescence) values. Test datasets for the papillary and reticular extracellular matrix from images in 24 female subjects, 35 to 60 years of age, were generated. Parameters for SAAID, edge detection, and fast Fourier transformation directionality were determined. Additionally, textural analyses based on the grey level co-occurrence matrix (GLCM) were conducted. At first, changes in the GLCM parameters were determined in the native greyscale images and, furthermore, in the Hilbert-transformed images. Our results demonstrate a...

In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy

Journal of Biomedical Optics, 2013

Optical assessment of skin burns is possible with second-harmonic-generation (SHG) microscopy due to its high sensitivity to thermal denaturation of collagen molecules. In contrast to previous studies that were performed using excised tissue specimens ex vivo, in vivo observation of dermal collagen fibers in living rat burn models with SHG microscopy is demonstrated. Changes in signal vanishing patterns in the SHG images are confirmed to be dependent on the burn degree. Comparison of the SHG images with Masson's trichrome-stained images indicated that the observed patterns were caused by the coexistence of molten and fibrous structures of dermal collagen fibers. Furthermore, a quantitative parameter for burn assessment based on the depth profile of the mean SHG intensity across the entire SHG image is proposed. These results and discussions imply a potential of SHG microscopy as a minimally invasive, highly quantitative tool for skin burn assessment.

Quantitative Differentiation of Normal and Scarred Tissues Using Second-Harmonic Generation Microscopy

The aim of this study was to differentiate normal and scarred hamster cheek pouch samples by applying a quantitative image analysis technique for determining collagen fiber direction and density in second-harmonic generation microscopy images. This paper presents a collagen tissue analysis of scarred cheek pouches of four adult male Golden Syrian hamsters as an animal model for vocal fold scarring. One cheek pouch was scarred using an electrocautery unit and the other cheek was used as a control for each hamster. A home-built upright microscope and a compact ultrafast fiber laser were used to acquire depth resolved epi-collected second-harmonic generation images of collagen fibers. To quantify the average fiber direction and fiber density in each image, we applied two-dimensional Fourier analysis and intensity thresholding at five different locations for each control and scarred tissue sample, respectively. The resultant depth-resolved average fiber direction variance for scarred hamster cheek pouches (0.61 AE 0.03) was significantly lower (p < 0.05) than control tissue (0.73 AE 0.04), indicating increased fiber alignment within the scar. Depth-resolved average voxel density measurements indicated scarred tissues contained greater (p < 0.005) fiber density (0.72 AE 0.09) compared to controls (0.18 AE 0.03). In the present study, image analysis of both fiber alignment and density from depth-resolved second-harmonic generation images in epi-detection mode enabled the quantification of the increased collagen fiber deposition and alignment typically observed in fibrosis. The epi-detection geometry is the only viable method for in vivo imaging as well as imaging thick turbid tissues. These quantitative endpoints, clearly differentiating between control and scarred hamster cheek pouches, provide an objective means to characterize the extent of vocal fold scarring in vivo in preclinical and clinical research. In particular, this non-invasive method offers advantages for monitoring scar treatments in live animals and following the effects of scarring-related treatments such as application of steroids or drugs targeting pathways involved in fibrosis. SCANNING 9999:1–10, 2016.