Strategies of Speed Control of Induction Motor Drive (original) (raw)
Related papers
Comparative Analysis between PI and Fuzzy Controller for Speed Control of Induction Motor
This paper portrays the way of implementing fuzzy logic in improving the performance of induction motor drive. Here a rule-based fuzzy logic based controller is designed and simulated with the help of mat lab. A pi controller is also designed in Simulink. Then performances of both the controller are simulated and compared. For controlling speed here scalar control method is employed, where magnitude of the stator voltage and frequency is changed proportionately. For this v/f control, a reference speed is chosen and controller is designed as such, it can provide that desired (reference) speed in case of frequent load changes. The major merit of fuzzy controller over pi controller is use of linguistic variable and user defined rule base that makes it possible to incorporate human intelligence in the controller. Fuzzy logic based controller also has the capability to control both linear and nonlinear system.
Fuzzy Speed Controller Design of Three Phase Induction Motor
2012
The induction motor is without doubt the most used electrical motor because of its unique characteristics. Most of its applications need fast and intelligent speed control system.This paper presents an intelligent and advanced speed control based on fuzzy logic technique to achieve maximum torque and efficiency.A rule based Mamdani type fuzzy logic controller is applied to closed loop induction motor model.Scalar control(volt-hertz) method is used for controlling speed.A conventional controller is compared practically to fuzzy logic controller using Matlab/Simulink software package.The simulation results show the superiority of the fuzzy logic controller.
Comparative Study of Speed Control of Induction Motor Using PI and Fuzzy Logic Controller
This paper proposes the idea of using " Fuzzy Logic Technique " in estimating motor speed and controlling it for Induction motor. The Induction motor is modeled using dq axis theory. The main objective of this project is to develop a fuzzy logic based controller to control the speed of the induction motor, employing the scalar control model. The voltage and frequency input to the induction motor are to be controlled in order to obtain the desired speed response. The designed Fuzzy Logic Controllers performance is also weighed against with that of a PI controller. For V/f speed control of the induction motor, a reference speed has been set and the control architecture includes a rule base of 49 rules. These rules portray a nonchalant relationship between two inputs i.e. speed error (e), change in speed error (∆e) and an output i.e change ofcontrol (ω sl)
Hybrid Fuzzy based Scalar Speed Control of Three Phase Induction Motor
2013
This paper presents a hybrid fuzzy controller for scalar speed control of three phase squirrel cage induction motor. In this hybrid fuzzy controller, both proportional integral controller and fuzzy logic controller are operated alternately according to speed error to utilize the advantages of both controllers. Here the speed control is possible by varying supply frequency using a voltage source inverter while keeping voltage to frequency ratio as a constant. Speed error is given as input to the proportional integral controller, and speed error and speed error variation are given as input to the fuzzy logic controller. The controller output controls the reference of space vector pulse width modulation. Hence the fundamental frequency and fundamental voltage of inverter output can be varied to control the motor speed. The performance of hybrid fuzzy controller under reference speed and load torque variation is evaluated using simulation results in Simulink. Index Terms Fuzzy Logic Con...
Fuzzy logic speed control of an induction motor
Microprocessors and Microsystems, 1999
This paper describes the use of fuzzy logic techniques to control the speed of a three-phase induction motor. The use of Matlab/Simulink and fuzzyTECH MCU96 as software development tools for system design is emphasised. Hardware implementation is based on a standard 16/32-bit microcontroller, without the need of any additional components for the fuzzy logic controller. The system performance is evaluated in comparison with a traditional PI control scheme. Both simulation and experimental results are presented. ᭧
Speed Control of Induction Motor using Fuzzy Logic Approach
This thesis presents a methodology for implementation of a rule-based fuzzy logic controllerapplied to a closed loop Volts/Hz induction motor speed control. The Induction motor ismodelled using a dq axis theory. The designed Fuzzy Logic Controller's performance is weighed against with that of a PI controller. The pros of the Fuzzy Logic Controllers (FLCs) over the conventional controllers are: (i) they are economically advantageous to develop, (ii) a wider range of operating conditions c an be covered using FLCs, and (iii) they are easier to adapt in terms of natural language. Another advantage is that, an initial approximate set of fuzzy rules can be impulsively refined by a self-organizing fuzzy controller. For V/f speed control of the induction motor, a reference speed has been used and the control architecture includes some rules. These rules portray a nonchalant relationship between two inputs and an output, all of which are nothing but normalized voltages. These are: The input speed error denoted by Error (e). The input derivative of speed error denoted by Change of error (Δe), and The output frequency denoted by Change of Control (). The errors are evaluated according to the rules in accordance to the defined member functions. The member functions and th e rules have been defined using the FIS editor given in MATLAB. Based on the rules the surface view of the control has been recorded. The system has been simulated in MATLAB/SIMULINK® and the results have been attached. The results obtained by using a conventional PI controller and the designed Fuzzy Logic Controller has been studied and compared. The controller has then been tuned by trial and error method and simulations have been run using the tuned controller. Keywords: V/f induction motor speed control, dq axis theory, Fuzzy Logic controller, Mamdani Architecture _______________________________________________________________________________________________________ I. INTRO DUCTIO N The use of induction motors has increased tremendously since the day of its invention. They are being used as actuators in various industrial processes, robotics, house appliances (generally single phase) and other similar applications. The reason for its day by day increasing popularity can be primarily attributed to its robust construction, simplicity in design and cost effect iveness. These have also proved to be more reliable than DC motors. Apart from these advantages, they have some unfavorable features like their time varying and non-linear dynamics. Speed control is one of the various application imposed constraints for the choice of a motor. Hence, in the last few years it has been studied by many, and various methods for the same have been developed. An insight into the same has been provided in Chapter 2. Out of all the speed control mechanisms, the Volts/Hertz control scheme is very popular because it provides a wide range of speed control with good running and transient performance. This scheme has been thoroughly explained in Chapter 2. This control mechanism is referred to as scalar control mode. Here both the input and output commands are speed, unlike the Vector control mode where it is torque/flux and reference current, respectively. Even though vector control drives provide excellent performance in terms of dynamic speed regulation, implementation of the same is tedious owing to on-line coordinate transformations that convert line currents into two axis representation and vice versa A. Induction Motor: The induction motor finds its place amongst more than 85% of industrial motors as well as in its single-phase form in various domestic usages. Markedly a constant-speed motor with shunt characteristic, speed drops only by a few per cent from no-load to full load. Hence in the past, induction motors have been used primarily in constant speed applications. Traditional methodologies employing speed control have either been high-priced or very inefficient, unlike the dc motor. Nonetheless, the presence of commutate and brushes in the latter, which require recurrent maintenance make dc motor drives improper for use in hazardous and polluted environments. On the other hand, owing to the simple, rugged, cheaper, smaller and subsequently light er build of induction motor drives (particularly squirrel-cage type), they are designed for fans, blowers, cranes, traction, conveyers, etc. in spite of finding stiff competition from dc drives for such applications .
American Journal of Management Science and Engineering, 2017
The principles of controlling an AC driven three phase induction motor employing constant volts/hertz (v/f) control method and the space vector pulse width modulation (SVPWM) technique are reviewed. The induction motor is one of the most common electrical motors in usage, owing to its unique characteristics. Its further application strength requires a robust, problem handling, fast and intelligent speed control system. As a result of this, developing an intelligent knowledge based fuzzy logic controller (FLC) became eminent, and on this basis, this paper is presented. By varying the motor speed with input reference speed, an error signal and a feedback loop is generated. The FLC then operates on the principles of mapping with corrective measure of an error signal generated and it is regulated by sets of programmable IF-THEN rules integrating the Mamdani fuzzy inference approach. The rules projected and formed are used to overcome drawbacks such as complexities and insensitivities to changes in model parameters associated to conventional controllers. The application of the constant v/f method was used to maintain constant voltage to frequency ratio, therefore, creating a constant magnetic field and a maximum torque throughout the operating range. This in turn generates a voltage and an angle command for the actualization of the SVPWM technique. This entire set up was repeated but now with a classical control method like the proportional integral differential (PID) controller. With a simulation time of 2s, results showed that with FLC, a better speed response can be achieved from a 5Hp 350V 50Hz AC motor attaining steady-state at 0.21s at no-load conditions. Simulation results showed a superior dynamic scheme of the FLC over the PI controller in terms of sensitivity to changes in model parameters. With a load torque of 10Nm applied at 1s, the FLC achieved stability at 1.2s still maintaining a constant speed of 157rads/s.
Speed Control of Induction Motor using Fuzzy Logic
— In this paper, speed control of induction motor using fuzzy logic controller is proposed. Speed control of induction motor takes place by, Direct torque control(DTC) method i.e. by directly controlling torque. Here we have used Voltage/Frequency speed control method of induction motor. The fuzzy logic controller (FLC) solves the problem of non linearity's and parameter variation of induction motor. Unlike the conventional standard controllers, the proposed controller has much less computationally demanding. Direct torque control scheme of induction motor is firstly used. Then, the specified rule and their membership functions of proposed fuzzy logic system will be represented. The performance of a controller is evaluated under various operating conditions. A simplified FLC with relatively fewer rules will be implemented for perfect speed control.
Hybrid Speed Control of Induction Motor using PI and Fuzzy Controller
International Journal of Computer Applications, 2011
This paper presents a modified fuzzy control for speed control of induction motor (IM). At first, the PI controller is investigated for speed control of Induction Motor, and then fuzzy logic controller performance is simulated. Induction Motor performance is checked through the simulation studies in MATLAB/SIMULINK environment. Hybridization of fuzzy logic (FL) and PI controller for the speed control of given motor is also performed to remove the disadvantages of FL controller (steady-state error) and PI controller (overshoot and undershoot). According to the simulation results, hybrid controller creates better performance in terms of rice time, overshoot, undershoot and settling time.
International Journal of Power Electronics and Drive Systems, 2016
In this article, we have set up a vector control law of induction machine where we tried different type of speed controllers. Our control strategy is of type Field Orientated Control (FOC). In this structure we designed a Fuzzy Gain-Scheduling Proportional-Integral (Pi) controller to obtain best result regarding the speed of induction machine. At the beginning we designed a Pi controller with fixed parameters. We came up to these parameters by identifying the transfer function of this controller to that of Broïda (second order transfer function). Then we designed a fuzzy logic (FL) controller. Based on simulation results, we highlight the performances of each controller. To improve the speed behaviour of the induction machine, we have designend a controller called "Fuzzy Gain-Scheduling Proportional-Integral controller" (FGS-PI controller) which inherited the pros of the aforementioned controllers. The simulation result of this controller will strengthen its performances.