A DETAILED STUDY AND ANALYSIS OF OCR USING MATLAB (original) (raw)
Related papers
A REVIEW: OPTICAL CHARACTER RECOGNITION
This paper presents detailed review in the field of Optical Character Recognition. Various techniques are determine that have been proposed to realize the center of character recognition in an optical character recognition system. Even though, sufficient studies and papers are describes the techniques for converting textual content from a paper document into machine readable form. Optical character recognition is a process where the computer understands automatically the image of handwritten script and transfer into classify character. This material use as a guide and update for readers working in the Character Recognition area. Selection of a relevant feature extraction method is probably the single most important factor in achieving high character recognition with much better accuracy in character recognition systems without any variation.
IMAGE PROCESSING BASED OPTICAL CHARACTER RECOGNITION USING MATLAB
Character recognition techniques associate a symbolic identity with the image of character. In a typical OCR systems input characters are digitized by an optical scanner. Each character is then located and segmented, and the resulting character image is fed into a pre-processor for noise reduction and normalization. Certain characteristics are the extracted from the character for classification. The feature extraction is critical and many different techniques exist, each having its strengths and weaknesses. After classification the identified characters are grouped to reconstruct the original symbol strings, and context may then be applied to detect and correct errors. Optical character recognition (OCR) is very popular research field since 1950's. Character recognition techniques associate a symbolic identity with the image of character. In a typical OCR systems input characters are digitized by an optical scanner. Each character is then located and segmented, and the resulting character image is fed into a pre-processor for noise reduction and normalization. Certain characteristics are the extracted from the character for classification. The feature extraction is critical and many different techniques exist, each having its strengths and weaknesses. After classification the identified characters are grouped to reconstruct the original symbol strings, and context may then be applied to detect and correct errors.
A Review on Optical Character Recognition Techniques
International journal of computer applications, 2017
At present scenario, there is growing demand for the software system to recognize characters in a computer system when information is scanned through paper documents. This paper presents detailed review in the field of Optical Character Recognition. Various techniques are determined that have been proposed to realize the center of character recognition in an optical character recognition system. OCR (Optical Character Recognition) translates images of typewritten or handwritten characters into the electronically editable format and it preserves font properties. Different techniques for preprocessing and segmentation have been surveyed and discussed in this paper.
A Survey on Optical Character Recognition System
2017
Optical Character Recognition (OCR) has been a topic of interest for many years. It is defined as the process of digitizing a document image into its constituent characters. Despite decades of intense research, developing OCR with capabilities comparable to that of human still remains an open challenge. Due to this challenging nature, researchers from industry and academic circles have directed their attentions towards Optical Character Recognition. Over the last few years, the number of academic laboratories and companies involved in research on Character Recognition has increased dramatically. This research aims at summarizing the research so far done in the field of OCR. It provides an overview of different aspects of OCR and discusses corresponding proposals aimed at resolving issues of OCR.
Optical Character Recognition (OCR) System
In the running world, there is growing demand for the software systems to recognize characters in computer system when information is scanned through paper documents as we know that we have number of newspapers and books which are in printed format related to different subjects. These days there is a huge demand in " storing the information available in these paper documents in to a computer storage disk and then later reusing this information by searching process ". One simple way to store information in these paper documents in to computer system is to first scan the documents and then store them as IMAGES. But to reuse this information it is very difficult to read the individual contents and searching the contents form these documents line-by-line and word-byword. The reason for this difficulty is the font characteristics of the characters in paper documents are different to font of the characters in computer system. As a result, computer is unable to recognize the characters while reading them. This concept of storing the contents of paper documents in computer storage place and then reading and searching the content is called DOCUMENT PROCESSING. Sometimes in this document processing we need to process the information that is related to languages other than the English in the world. For this document processing we need a software system called CHARCATER RECOGNITION SYSTEM. This process is also called DOCUMENT IMAGE ANALYSIS (DIA).
A Detailed study and recent research on OCR
Vol. 19 No. 2 FEBRUARY 2021 International Journal of Computer Science and Information Security (IJCSIS), 2021
This paper provides a total overview of OCR. Optical character recognition is nothing but the ability of the computer to collect and decipher the handwritten inputs from documents, photos or any other devices. Over these many years, many researchers have been researching and paying attention on this topic and proposed many methods which can be solved. This research provides a historical view and the summarization of the research which done on this field.
Optical Character Recognition using MATLAB
Character recognition techniques associate a symbolic identity with the image of character. In a typical OCR systems input characters are digitized by an optical scanner. Each character is then located and segmented, and the resulting character image is fed into a pre-processor for noise reduction and normalization. Certain characteristics are the extracted from the character for classification. The feature extraction is critical and many different techniques exist, each having its strengths and weaknesses. After classification the identified characters are grouped to reconstruct the original symbol strings, and context may then be applied to detect and correct errors.
OPTICAL CHARACTER RECOGNITION: AN ENCOMPASSING REVIEW
Optical character recognition (OCR) is becoming a powerful tool in the field of Character Recognition, now a days. In the existing globalized environment, OCR can play a vital role in different application fields. Basically, OCR technique converts images into editable format. This technique converts images in the form of documents such as we can edit, modify and store data more safely for longtime. This paper presents basic of OCR technique with its components such as pre-processing, Feature Extraction, Classification, post-processing etc. There are various techniques have been implemented for the recognition of character. This Review also discusses different ideas implemented earlier for recognition of a character. This paper may act as a supportive material for those who wish to know about OCR.
A Study on Optical Character Recognition Techniques
International Journal of Computational Science, Information Technology and Control Engineering (IJCSITCE), 2018
Optical Character Recognition (OCR) is the process which enables a system to without human intervention identifies the scripts or alphabets written into the users’ verbal communication. Optical Character identification has grown to be individual of the mainly flourishing applications of knowledge in the field of pattern detection and artificial intelligence. In our survey we study on the various OCR techniques. In this paper we resolve and examine the hypothetical and numerical models of Optical Character Identification. The Optical character identification or classification (OCR) and Magnetic Character Recognition (MCR) techniques are generally utilized for the recognition of patterns or alphabets. In general the alphabets are in the variety of pixel pictures and it could be either handwritten or stamped, of any series, shape or direction etc. Alternatively in MCR the alphabets are stamped with magnetic ink and the studying machine categorize the alphabet on the basis of the exclusive magnetic field that is shaped by every alphabet. Both MCR and OCR discover utilization in banking and different trade appliances. Earlier exploration going on Optical Character detection or recognition has shown that the In Handwritten text there is no limitation lying on the script technique. Hand written correspondence is complicated to be familiar through due to diverse human handwriting style, disparity in angle, size and shape of calligraphy. An assortment of approaches of Optical Character Identification is discussed here all along through their achievement.