Hydromechanical behaviour of bentonite pellet mixtures (original) (raw)
Related papers
A constitutive model for partially saturated soils
Géotechnique, 1990
The Paper presents a constitutive model for describing the stress-strain behaviour of partially saturated soils. The model is formulated within the framework of hardening plasticity using two iodependent sets of stress variables: the excess of total stress over air pressure and the suction. The mode1 is able to represent, in a consistent and unified manner, many of the fundamental features of the behaviour of partially saturated soils which had been treated separately by previously proposed models. On reaching saturation, the mode1 becomes a conventional critical state model. Because experimental evidence is still limited, the model has been kept as simple as possible in order to provide a basic framework from which extensions are possible. Tbe mode1 is intended for partially saturated soils which are slightly or moderately expansive. After formulating the model for isotropic and biaxial stress states, typical predictions are described and compared, in a qualitative way, with characteristic trends of the behaviour of partially saturated soils. Afterwards, the results of a number of suction-controlled laboratory tests on compacted kaolin and a sandy clay are used to evaluate the ability of the model to reproduce, quantitatively, observed behaviour. The agreement between observed and computed results is considered satisfactory and confirms the possibilities of reproducing the most important features of partially saturated soil behaviour using a simple general framework. KEYWORDS: compaction; coustitutive relatioas; partial saturation; plasticity. L'article presente un modele constitutif pour d&crire le comportement contrainte/deformation des sols partiellement sat&s.
Soils and Foundations, 2013
Compacted bentonite-based materials are often used as buffer materials in radioactive waste disposal. A good understanding of their hydro-mechanical behaviour is essential to ensure the disposal safety. In this study, a mixture of MX80 bentonite and sand was characterized in the laboratory in terms of water retention property, swelling pressure, compressibility and hydraulic conductivity. The effects of the technological voids or the voids inside the soil were investigated. The technological voids are referred to as the macro-pores related to different interfaces involving the buffer material, whereas the voids inside the soil is referred to as the common macro-pores within the compacted bentonite/sand mixture. The results obtained show that at high suctions, the amount of water absorbed in the soil depends solely on suction, whereas at low suctions it depends on both suction and bentonite void ratio. There is a unique relationship between the swelling pressure and the bentonite void ratio, regardless of the sample nature (homogeneous or not) and sand fraction. However, at the same bentonite void ratio, a higher hydraulic conductivity was obtained on the samples with technological voids. The effect of sand fraction was evidenced in the mechanical yield behaviour: at the same bentonite void ratio, the bentonite-sand mixture yielded at a higher pre-consolidation stress.
Hydro-mechanical analysis of expansive clays : constitutive and numerical modelling
Bentonite-based materials are being currently considered in several countries as a backfill component in the multi-barrier concept for deep geological disposal of radioactive waste. The bentonite barrier fulfils several important functions: i) high swelling capacity to fill gaps and compress the excavation damaged zone and ii) very low hydraulic conductivity and important retention capacity which retards significantly radionuclides transport. Small-scale testing in geotechnical laboratories and in-situ experiments in underground research laboratories (URL) have demonstrated that initial state, water supply conditions and volume constrictions are the main aspects affecting the behaviour of bentonites. In this context, the main objective of the present study is the numerical simulation of the hydro-mechanical behaviour of expansive clays. For this purpose, a constitutive model has been developed to characterise the bentonite-based materials. The modelling of these materials is a quite...
Numerical and experimental modeling of geomechanical behavior of partially saturated soils
International Journal of Geo-Engineering
The Barcelona Basic Model (BBM) has been implemented in a finite difference-based computer program to simulate the behavior of unsaturated soils subjected to wetting. The BBM implementation was verified using analytical solutions, and the proposed model has been used to simulate the response of a compacted embankment under complete saturation and suction induced conditions. Numerical analyses indicate that considerable amount of total and differential settlements could develop at the top surface of the embankment. BBM is executed into FLAC2D extending a defined module for modified Cam Clay (MCC) and has been set up an analytical solution for suction-dependent stress and strain. Evaluating the effect of anisotropy and nonlinear apparent tensile strength in unsaturated soils, a modification to BBM formulation has been proposed and optimized by developing numerical analyses to reduce the size of elastic region of loading collapse (LC) curve. Then, an experimental study in the literatur...
Constitutive and numerical modelling of unsaturated soils
PhD Thesis of Domenico Gallipoli, 2000
The thesis focuses on three different areas: development of constitutive models for unsaturated soils, improvement of the finite element code “Compass” for coupled flow-deformation analysis involving unsaturated soils and application of the improved code to the simulation of pressuremeter tests in unsaturated soils. On the constitutive side, a unique relationship is proposed between degree of saturation, suction and specific volume by introducing dependency on specific volume in the simplified van Genuchten equation. This is a significant improvement over the common assumption of a state surface expression for degree of saturation. If combined with an elasto-plastic stress-strain model predicting the variation of specific volume, the proposed relationship is capable of reproducing irreversible changes of degree of saturation and changes of degree of saturation experimentally observed during shearing. Predictions show very good agreement with experimental results from tests on compacted Speswhite Kaolin published in the literature. On the numerical side, a number of changes to the code “Compass” have been performed. The new relationship for degree of saturation is implemented in the code and the implementation is validated against three benchmark problems. Use of the new relationship for degree of saturation results in significantly different predictions to those obtained if a conventional state surface expression for degree of saturation is used (as present in the original code). Implementation of the water and air continuity equations in “Compass” has been corrected by expressing these equations in terms of flux velocities relative to the soil skeleton. This is the form in which the equations should be expressed if they are to be combined with Darcy’s law for liquid and gas flows. The simulation of a notional laboratory test shows that the incorrect combination of Darcy’s law with absolute flux velocities, as present in the original code, causes significant errors. The convergency algorithm at constitutive level employed in the code has been corrected by introducing residual flux terms in the two flow equations, analogous to residual forces in the equilibrium equation. These terms must be taken into account if a convergency algorithm for an elasto-plastic stress-strain model is used and the relationship assumed for variation of degree of saturation involves any dependency on net stresses. A numerical study of a notional laboratory test shows that omission of residual flux terms results in substantial errors and may cause failure to converge. The plane_strain formulation of code “Compass” has been corrected by imposing the condition of nullity only on the out-of-plane component of the total strain rate vector instead of the out-of-plane component of each single contribution to the total strain rate, as was done in the original code. Such inconsistency, due to the history of development of finite element programs, also appears in other examples published in the literature. Numerical simulations of two types of bi-axial tests show that significantly different results are generally predicted by the correct and incorrect formulations, and also provide an explanation why this type of error was difficult to detect in codes implementing traditional models for saturated soils. The potential of the enhanced version of code “Compass” for analysing boundary value problems is demonstrated by simulations of pressuremeter tests in unsaturated soil. This study also provides some initial insight into the interpretation of pressuremeter tests in unsaturated soil by simulating tests at different loading rates in a normally consolidated soil. The mechanical behaviour of the soil is represented by the elasto-plastic Barcelona Basic Model of Alonso, Gens and Josa (1990) while the variation of degree of saturation is modelled by the new relationship proposed in the thesis. The entire range of loading rates, from undrained to fully drained (with respect to liquid), is simulated. Relatively small changes of suction are predicted even in the fastest test and the computed cavity pressure-cavity strain relationships are all very similar regardless of loading rate. It may therefore be possible to model even rapid pressuremeter tests in unsaturated soils as a drained (constant suction) process. Further work is required to investigate the generality of this conclusion.
Application to a compacted soil of a Cam Clay model extended to unsaturated conditions
This paper presents an interpretation of experimental results obtained at the Department of Geotechnical Engineering of the Università di Napoli Federico II. The results are part of an extensive program carried out to investigate the effects of partial saturation on the volumetric behaviour and on the initial shear stiffness of a compacted silt. Tests were performed using two suction-controlled devices, a triaxial cell and a Resonant Column Torsional Shear (RCTS) cell. The compatibility of experimental data with a Bishop Stress Model (BSM) is discussed in the paper. The BSM permits highlighting of the two main effects of suction on soil behaviour: the increase of the average stress acting on the soil skeleton and the hardening-cementing of the soil packing. Hydraulic hysteresis is included in the definition of the water retention curve so that its effects, such as the irreversible component of volume change recorded during drying paths, are automatically incorporated in the predictions of the model.
Coupled hydro-mechanical model for partially saturated soils predicting small strain stiffness
2014
In the paper, we present newly developed hydro-mechanical hypoplastic model for partially saturated soils predicting small strain stiffness. Hysteretic void ratio dependent water retention model has been incorporated into the existing hypoplastic model. This required thorough revision of the model structure to allow for the hydro-mechanical coupling dependencies. The model is formulated in terms of degree of saturation, rather than of suction. Subsequently, the small strain stiffness effects were incorporated using the intergranular strain concept modified for unsaturated conditions. New features included degree of saturation-dependent size of the elastic range and an updated evolution equation for the intergranular strain. The model has been evaluated using two comprehensive data sets on completely decomposed tuff from Hong-Kong and Zenos Kaolin from Iran. It has been shown that the modified intergranular strain formulation coupled with the hysteretic water retention model correctly reproduces the effects of both the stress and suction histories on small strain stiffness evolution. The model can correctly predict also different other aspects of partially saturated soil behaviour, starting from the very small strain range up to the asymptotic large-strain response.