Calcium in pre-laying and laying rations on the performance and quality of laying hens’ eggshell (original) (raw)
Related papers
Arch. Anim. Breed., 58, 301-307, 2015
The objective of this study was to evaluate the effect of particle size of a dietary Ca source on egg production and eggshell quality when added to hens’ diets that have different levels of calcium. The experiment was carried out on 216 ISA Brown hens (25 to 70 weeks of age), allocated to 9 groups of 12 replicates (cages), with two birds in each cage. A 3 x 3 factorial arrangement was used, with three dietary levels of calcium (3.20, 3.70 and 4.20 %) and three levels of dietary substitutions (0, 25 and 50 %) of fine particles of limestone (FPL, diameter 0.2–0.6 mm) with large particles of limestone (LPL, diameter 1.0–1.4 mm) as a Ca source. The level of Ca in the diet had no effect on egg production, mean egg weight, feed intake, feed conversion ratio or eggshell quality parameters (P>0:05). Substitution of FPL with LPL did not affect laying performance indices or eggshell quality at 30, 43 and 53 weeks of age (P>0:05); however, it increased (P<0:05) eggshell percentage, thickness, density and breaking strength in older hens (69 weeks of age). In conclusion, the results of this study demonstrated that a level of 3.20% Ca in a layer’s diet is sufficient through the entire laying cycle to maintain good egg production and eggshell quality and that partial (25 or 50 %) substitution of fine- with large-particle limestone can, irrespective of the level of Ca in the diet, improve eggshell quality in aged laying hens.
Effect of Calcium Sources and Particle Size on Performance and Eggshell Quality in Laying Hens
Turkish Journal of Agriculture - Food Science and Technology, 2014
An experiment was conducted to determine the effect of different combination calcium sources and particle size on performance and egg shell quality in layer hens. In the experiment, 198 brown laying hens at 44 week of age were randomly assigned into 11 treatments groups. The experimental diets consisted of different calcium sources (Fine limestone, large limestone, large oyster shell and large egg shell) and their different combination. The experimental unit consisted of a groups of three hens, thus each treatment was replicated six times. Different calcium sources and particle size addition to the laying hens diet had no significantly effect on body weight gain, egg production, egg mass, feed intake, feed conversion ratio, egg specific gravity, egg shell weight, egg shell thickness and egg shell breaking strength but egg weight had significantly affected by the treatments. The significantly highest egg weight was found in laying hens fed with 50 % fine limestone and 50 % large lime...
Poultry Science, 2008
A total of 1,152 Lohmann Brown laying hens were used to study the influence of level (3.5 and 4.0%) and source (coded FIN, COA, and OYS) of Ca in the diet on productive performance and egg quality from 58 to 73 wk of age. The FIN diet contained all the Ca carbonate as fine limestone (LIM). In the COA and OYS diets, 40% of the fine LIM was substituted with either coarse LIM or oyster shell. Each treatment was replicated 8 times (24 hens). Productive performance and egg quality traits were recorded every 4 wk, and tibia characteristics and shell quality traits were determined at 73 wk of age. An increase in Ca intake from 4.08 to 4.64 g/hen per day improved egg production (71.2 vs. 74.9%; P < 0.001), egg mass (49.0 vs. 51.4 g; P < 0.05), and feed conversion ratio (2.43 vs. 2.30 kg of feed/kg of egg; P < 0.001). In addition, an increase in Ca intake improved shell weight (9.98 vs. 10.20%; P < 0.05), shell thickness (0.342 vs. 0.351 mm; P < 0.01), and shell density (82.0 vs. 83.8 mg/cm 2 ; P < 0.001). Calcium source had no effect on productive performance, tibia characteristics, or egg quality except for shell density, which was greater for hens fed COA than for hens fed FIN, with hens fed OYS being intermediate (81.9 vs. 84.0 vs. 82.7 mg/cm 2 , respectively; P < 0.05). It was concluded that Brown egg-laying hens in the late phase of production require more than 3.5% Ca in the diet (4.08 g of Ca/hen per day) and that the substitution of 40% of fine LIM with COA or OYS does not affect productive performance and has little impact on shell quality and tibia characteristics.
Calcium particle size and feeding time influence egg shell quality in laying hens
Acta Scientiarum. Animal Sciences
An experiment with Leghorn laying hens was undertaken to determine the effect of oyster shell particle size and feeding time on different production variables, calcium retention, plasma calcium content and egg internal and external quality. Two hundred Leghorn layers (40 weeks old old) were allocated in five dietary treatments with four replicates during ten weeks. Two particle size combinations (wherein 50% of calcium substituted by medium or coarse particles (1-2 mm and 2-4 mm respectively) and two feeding time (8-pm or 9-am) were compared against a control diet (100% ground, <1 mm which fed with meal). Egg number, egg production, egg mass and feed conversion ratio did not differ among treatments (p > 0.05). Hens fed diets containing coarse Ca had significantly greater feed intake and calcium content of excreta (p > 0.05), whereas medium particle size reduced feed intake compared to control. Coarse particle size and feeding time at 9-pm significantly increased the calcium content of egg shell, egg shell thickness, egg surface area (ESA) and shell weight per unit surface area (SWUSA) (p < 0.05). Plasma calcium concentration, gizzard digesta calcium content and egg specific gravity were not affected by treatments (p > 0.05). Providing of calcium at 9-pm resulted an increase of egg shell (%), shell weight and thickness (p < 0.05). The results have shown that substitution of fine oyster shell with 50% coarse particles (2-4 mm) and feeding time at 9-pm have better effects on egg shell quality.
Effect of Dietary Calcium Sources on Laying Hens Performance and Egg Quality
Journal of Animal Production Advances, 2013
This study was designed to investigate the effect of feeding two different (oystershell and limestone) sources of calcium to layer hens (Bovan) on performance and egg shell quality. The experiment extended for 4 weeks during which 24 Bovan layers at 24 weeks were used. Birds were divided into two groups (12 bird/ treatment) with four replicates in each battery cage. Traits measured were egg production, feed intake, feed conversion ratio,, body weight change, egg weight, egg height, egg diameter, albumen weight, albumen height, yolk weight, shell weight, and shell thickness. Results showed that the source of calcium (oystershell versus limestone) significantly affected (P<0.05) egg production(59.82 Vs 76.19), feed intake(139.53 Vs142.02), feed conversion ratio(4.67 Vs 2.99) and body weight change (-4.67 Vs 8.91). On the other hand, the source of calcium had no significant effect (P<0.05) on egg weight, egg height, egg diameter, albumen weight, yolk weight, shell weight, shell thickness and shell ash. The results suggest that the inclusion of lime stone in layers ration as calcium source is more beneficial than oystershell.
Animals, 2020
The objective of this study was to evaluate hen performance and eggshell quality response to genotype, housing system, and feed calcium (Ca) level. For this purpose, an experiment was conducted on 360 laying hens of ISA Brown, Bovans Brown (commercial hybrids), and Moravia BSL (traditional Czech hybrid). Laying hens were kept in enriched cages and on littered floor and fed similar feed mixtures with different Ca content (3.00% vs. 3.50%). In terms of hen performance, ISA Brown had the highest egg production (84.2%) compared to Moravia BSL (74.3%) and Bovans Brown (71.4%). Regarding eggshell quality, Bovans Brown showed the highest values of all eggshell quality parameters. Increasing feed Ca level augmented egg production (p ≤ 0.001) but had no effect on other performance parameters. Except eggshell thickness, all eggshell quality parameters were affected by the three-way interaction of genotype, housing, and Ca. Bovans Brown, which had the strongest eggshells (5089 g/cm2) when hous...
World's Poultry Science Journal, 71: 83-93
The objective of this review article is to update and discuss the current findings from studies with laying hens on dietary factors that can beneficially affect eggshell quality, with special emphasis on microelements and feed additives. The crucial importance of dietary calcium, phosphorus and vitamin D3 levels and sources for eggshell quality has been well documented in scientific literature. Many recent studies regarding the effect of nutrition on eggshell parameters have focussed on dietary micromineral levels and sources. There has been also growing interest in the influence of feed additives on the improvement of intestinal health and mineral availability. The results of the of the experiments presented in this review demonstrate that efficacy of the layer diet supplementation with microelements and feed additives is not consistent, however findings of several trials indicate, that eggshell quality may be positively affected in certain conditions by optimal dietary level and form of manganese, as well as by addition of pre- and probiotics, organic acids, and herb extracts.
International Journal of Poultry Science, 2006
In order to study the effect of four levels of extra calcium carbonate as limestone (0, 1, 2 and 3 g/hen/day, laying hen size, 3-4 mm) in a finished standard diets of laying hens, one hour before starting dark period, 160 Hy-line W36 laying hens, 85 weeks of age (after force molting) were selected and tested in a completely randomized block design with four treatments and four replicates. In a period of 8 weeks, feed intake (FI), egg weigh (EW), the number of cracked eggs (CE), the number of broken eggs (BE) and hen day egg production (HDEP) recorded daily. Eggshell quality including eggshell weight (ESW) and eggshell thickness (EST) were recorded every two weeks. CE, BE, ESW and EST were significantly improved by adding extra levels of calcium carbonate into the finished diets (P<0.05). The highest incidence of CE and BE were seen in treatment one (control diet with no added extra calcium carbonate) and the lowest incidence of these traits were seen in treatment four (3 g/hen/day extra calcium carbonate). The best and the worst quality of ESW and EST were also seen in treatment four and one, respectively. Under the conditions of this study, it was concluded that use of 3g/hen/day extra calcium carbonate before starting the dark period in laying hens improves egg quality traits and therefore more benefits to egg producers and more healthy eggs for consumers.
IOSR Journals , 2019
This study was conducted at the University of Maiduguri Poultry and Research farm, to investigate the effects of various calcium sources on the productive and egg quality performance of spent layers. A total of ninety (96) Black Harco layers at the age of 58 weeks were randomly assigned in to four different treatment and replicated two times with12 birds each in a completely randomized design (CRD). They were reared on varying calcium and phosphorus sources name bone meal, oyster shell, periwinkle shell and limestone for treatment T1,T2,T3 and T4. The study revealed that feed consumption and feed conversion Ratio did not differ (P<0.05) significantly among treatment groups. Egg weight, Albumen length and Haugh unit also did not differ significantly. However, albumen height, albumen width and albumen index and shell thickness differ significantly between treatment groups and was in favour of limestone. This indicates that the various Ca/P sources affect these parameters. The mortality record of 5.20% recorded was in treatment T3 and T4. The study concluded that the various Ca/P sources did not affect feed consumption and FCR but some egg quality factors.
Poultry Science, 2014
This study was carried out with the purpose of evaluating the effect of supplementing hens' diets with trace minerals from inorganic or organic sources on the productive performance, eggshell quality, and eggshell ultrastructure of laying hens. Three hundred sixty Hy-Line W36 laying hens between 47 to 62 wk of age were used and distributed in a completely randomized experimental design with 9 treatments, 5 replicates, and 8 birds for each experimental unit. The treatments consisted of a control diet without supplementation of the trace minerals Mn, Zn, and Cu; 4 supplementation levels of these trace minerals from an inorganic source; and the same levels of supplementation from an organic source (proteinates). The supplementation levels in milligrams per kilogram for Mn, Zn, and Cu, were, respectively, 35-30-05, 65-60-10, 95-90-15, and 125-120-20. There was no effect of supplementation of trace minerals on the rate of posture, feed intake, feed conversion, specific weight, and Haugh unit of eggs. However, there was a quadratic effect (P < 0.05) of the levels of trace mineral supplementation on average egg weight and egg mass; the results did not differ regarding the source used. The increase in the levels of supplementation of Mn, Zn, and Cu provided a linear increase (P < 0.05) in the breaking strength and the percentage of eggshell. There was a linear decrease (P < 0.05) in the egg loss and the number of mammillary buttons in the shell. The best results were obtained using diets supplemented with trace minerals from an organic source because these diets provided lower egg loss, higher thickness, and increased strength of the shell. Structurally, organic Mn, Zn, and Cu provided higher thickness of the palisade layer and lower mammillary density. The trace mineral supplementation improved the structural characteristics and the quality of the eggshells.