Uncertainty-based Online Mapping and Motion Planning for Marine Robotics Guidance (original) (raw)

Simultaneous Mapping and Planning for Autonomous Underwater Vehicles in Unknown Environments

2015

New potential applications of autonomous underwater vehicles (AUVs) involve operations in unknown and cluttered environments, therefore increasing the vehicle exposure to collisions. To cope with these situations, we use an AUV framework for planning collision-free paths in unknown environments, which adapt and replan the paths according to nearby obstacles perceived during the mission execution using different range sensing sonar. We present simulation and real-world results for the SPARUS-II AUV, a torpedo-shaped vehicle, performing autonomous missions.

Online path planning for autonomous underwater vehicles in unknown environments

2015 IEEE International Conference on Robotics and Automation (ICRA), 2015

We present a framework for planning collisionfree paths online for autonomous underwater vehicles (AUVs) in unknown environments. It is composed of three main modules (mapping, planning and mission handler) that incrementally explore the environment while solving start-to-goal queries. We use an octree-based representation of the environment and we extend the optimal rapidly-exploring random tree (RRT*) using concepts of anytime algorithms and lazy collision evaluation, thus including the capability to replan paths according to nearby obstacles perceived during the execution of the mission. To validate our approach, we plan paths for the SPARUS-II AUV, a torpedo-shaped vehicle performing autonomous missions in a 2-dimensional workspace. We demonstrate its feasibility with the SPARUS-II AUV in both simulation and real-world in-water trials.

A Fully-autonomous Framework of Unmanned Surface Vehicles in Maritime Environments using Gaussian Process Motion Planning

2022

Unmanned surface vehicles (USVs) are of increasing importance to a growing number of sectors in the maritime industry, including offshore exploration, marine transportation and defence operations. A major factor in the growth in use and deployment of USVs is the increased operational flexibility that is offered through use of autonomous navigation systems that generate optimised trajectories. Unlike path planning in terrestrial environments, planning in the maritime environment is more demanding as there is need to assure mitigating action is taken against the significant, random and often unpredictable environmental influences from winds and ocean currents. With the focus of these necessary requirements as the main basis of motivation, this paper proposes a novel motion planner, denoted as GPMP2*, extending the application scope of the fundamental GP-based motion planner, GPMP2, into complex maritime environments. An interpolation strategy based on Monte-Carlo stochasticity has been innovatively added to GPMP2* to produce a new algorithm named GPMP2* with Monte-Carlo stochasticity (MC-GPMP2*), which can increase the diversity of the paths generated. In parallel with algorithm design, a ROS based fully-autonomous framework for an advanced unmanned surface vehicle, the WAM-V 20 USV, has been proposed. The practicability of the proposed motion planner as well as the fully-autonomous framework have been functionally validated in a simulated inspection missions for an offshore wind farm in ROS.

A Novel Versatile Architecture for Autonomous Underwater Vehicle's Motion Planning and Task Assignment

2016

Expansion of today's underwater scenarios and missions necessitates the requestion for robust decision making of the Autonomous Underwater Vehicle (AUV); hence, design an efficient decision making framework is essential for maximizing the mission productivity in a restricted time. This paper focuses on developing a deliberative conflict-free-task assignment architecture encompassing a Global Route Planner (GRP) and a Local Path Planner (LPP) to provide consistent motion planning encountering both environmental dynamic changes and a priori knowledge of the terrain, so that the AUV is reactively guided to the target of interest in the context of an unknown underwater environment. The architecture involves three main modules: The GRP module at the top level deals with the task priority assignment, mission time management, and determination of a feasible route between start and destination point in a large scale environment. The LPP module at the lower level deals with safety consid...

Global Motion Planning under Uncertain Motion, Sensing, and Environment Map

comp.nus.edu.sg

Uncertainty in motion planning is often caused by three main sources: motion error, sensing error, and imperfect environment map. Despite the significant effect of all three sources of uncertainty to motion planning problems, most planners take into account only one or at most two of them. We propose a new motion planner, called Guided Cluster Sampling (GCS), that takes into account all three sources of uncertainty for robots with active sensing capabilities. GCS uses the Partially Observable Markov Decision Process (POMDP) framework and the point-based POMDP approach. Although point-based POMDPs have shown impressive progress over the past few years, it performs poorly when the environment map is imperfect. This poor performance is due to the extremely high dimensional state space, which translates to the extremely large belief space B. We alleviate this problem by constructing a more suitable sampling distribution based on the observations that when the robot has active sensing capability, B can be partitioned into a collection of much smaller sub-spaces, and an optimal policy can often be generated by sufficient sampling of a small subset of the collection. Utilizing these observations, GCS samples B in twostages, a subspace is sampled from the collection and then a belief is sampled from the subspace. It uses information from the set of sampled sub-spaces and sampled beliefs to guide subsequent sampling. Simulation results on marine robotics scenar-

Feedback Motion Planning for Long-Range Autonomous Underwater Vehicles

OCEANS 2019 - Marseille, 2019

Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new long-range autonomous underwater vehicle called Tethys is adapted to study different oceanic phenomena. Additionally, an ocean environment has external forces and moments along with changing water currents which are generally not considered in a vehicle kinematic model. In this scenario, it is not enough to generate a simple trajectory from an initial location to a goal location in an uncertain ocean as the vehicle can deviate from its intended trajectory. As such, we propose to compute a feedback plan that adapts the vehicle trajectory in the presence of any modeled or unmodeled uncertainties. In this work, we present a feedback motion planning method for the Tethys vehicle by combining a predictive ocean model and its kinematic modeling. Given a goal location, the Tethys kinematic model, and the water flow pattern, our method computes a feedback plan for the vehicle in a dynamic ocean environment that reduces its energy consumption. The computed feedback plan provides the optimal action for the Tethys vehicle to take from any location of the environment to reach the goal location considering its orientation. Our results based on actual ocean model prediction data demonstrate the applicability of our method.

Navigation in the Presence of Obstacles for an Agile Autonomous Underwater Vehicle

2020

Navigation underwater traditionally is done by keeping a safe distance from obstacles, resulting in "fly-overs" of the area of interest. Movement of an autonomous underwater vehicle (AUV) through a cluttered space, such as a shipwreck or a decorated cave, is an extremely challenging problem that has not been addressed in the past. This paper proposes a novel navigation framework utilizing an enhanced version of Trajopt for fast 3D path-optimization planning for AUVs. A sampling-based correction procedure ensures that the planning is not constrained by local minima, enabling navigation through narrow spaces. Two different modalities are proposed: planning with a known map results in efficient trajectories through cluttered spaces; operating in an unknown environment utilizes the point cloud from the visual features detected to navigate efficiently while avoiding the detected obstacles. The proposed approach is rigorously tested, both on simulation and in-pool experiments, p...

Path Planning for Autonomous Underwater Vehicles

IEEE Transactions on Robotics, 2007

This paper addresses the path planning problem for autonomous underwater vehicles (AUVs) in uncertain ocean environments. In comparison with mobile robots, the motion of an AUV is frequently interfered by ocean currents. Thus, the path planning solution should not only consider generating low-cost, collision-free and dynamically feasible paths but also dealing with environmental disturbances and actuation errors. In this work, the novel feature of the proposed solution is that a reinforcement learning approach is presented, and the exploration strategies for optimizing the leaning episodes are also evaluated and discussed. The proposed solution is validated by a simulated tested constructed upon a grid-based map with a model of an AUV in uncertain environments.

Risk based motion planning and navigation in uncertain dynamic environment

2010

Navigation in large dynamic spaces has been often adressed using deterministic representations, fast updating and reactive avoidance strategies. However, probabilistic representations are much more informative and their use in mapping and prediction methods improves the quality of obtained results. The paper proposes a new concept to integrate a probabilist collision risk function linking planning and navigation methods with the perception and the prediction of the dynamic environments. Moving obstacles are supposed to move along typical motion patterns represented by Gaussian Processes. The likelihood of the obstacles' future trajectory and the probability of occupation are used to compute the risk of collision. The proposed planning algorithm is a sampling-based partial planner guided by the risk of collision. The perception and prediction information are updated on-line and reused by the planner. The decision takes into account the most recent estimation. Results show the performance for a robotic wheelchair in a simulated environment among multiple dynamic obstacles.

Autonomous Trajectory Design System for Mapping of Unknown Sea-floors using a team of AUVs

2018 European Control Conference (ECC), 2018

This research develops a new on-line trajectory planning algorithm for a team of Autonomous Underwater Vehicles (AUVs). The goal of the AUVs is to cooperatively explore and map the ocean seafloor. As the morphology of the seabed is unknown and complex, standard non-convex algorithms perform insufficiently. To tackle this, a new simulationbased approach is proposed and numerically evaluated. This approach adapts the Parametrized Cognitive-based Adaptive Optimization (PCAO) algorithm. The algorithm transforms the exploration problem to a parametrized decision-making mechanism whose real-time implementation is feasible. Upon that transformation, this scheme calculates off-line a set of decision making mechanism's parameters that approximate the-nonpractically feasible-optimal solution. The advantages of the algorithm are significant computational simplicity, scalability, and the fact that it can straightforwardly embed any type of physical constraints and system limitations. In order to train the PCAO controller, two morphologically different seafloors are used. During this training, the algorithm outperforms an unrealistic optimal-one-step-ahead search algorithm. To demonstrate the universality of the controller, the most effective controller is used to map three new morphologically different seafloors. During the latter mapping experiment, the PCAO algorithm outperforms several gradient-descent-like approaches.