PRION PROTEIN AS A PATHOGEN: A REVIEW (original) (raw)

The Molecular Pathology of Prion Diseases

2004

15 Abstract Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of invariably fatal neurodegenerative disorders. Uniquely, they may present as sporadic, inherited, or infectious forms, all of which involve conversion of the normal cellular prion protein (PrP) into a pathogenic likeness of itself (PrP). Formation of neurotoxic PrP and/or loss of the normal function of native PrP result in activation of cellular pathways ultimately leading to neuronal death. Prion diseases can affect both humans and animals, with scrapie of sheep, bovine spongiform encephalopathy (BSE), and Creutzfeldt-Jakob disease being the most notable. This review is intended to provide an overview of the salient scientific discoveries in prion research, mainly from a molecular perspective. Further, some of the major outstanding questions in prion science are highlighted. Prion research is having a profound impact on modern medicine, and strategies for prevention and treatment of these...

Prions: Protein Only or Something More? Overview of Potential Prion Cofactors

Journal of Molecular Neuroscience, 2006

Transmissible spongiform encephalopathies (TSEs) in humans and animals are attributed to protein-only infectious agents, called prions. Prions have been proposed to arise from the conformational conversion of the cellular protein PrP C into a misfolded form (e.g., PrP Sc for scrapie), which precipitates into aggregates and fibrils. It has been proposed that the conversion process is triggered by the interaction of the infectious form (PrP Sc ) with the cellular form (PrP C ) or might result from a mutation in the gene for PrP C . However, until recently, all efforts to reproduce this process in vitro had failed, suggesting that host factors are necessary for prion replication. In this review we discuss recent findings such as the cellular factors that might be involved in the conformational conversion of prion proteins and the potential mechanisms by which they could operate.

Physiology of the prion protein

2008

diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP C) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP C. Here we examine the physiological functions of PrP C at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP C with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP C both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior. I. INTRODUCTION: A BRIEF ACCOUNT OF PRION PATHOLOGY A. The Prion Diseases Prion diseases correspond to anatomo-pathologically defined transmissible spongiform encephalopathies (TSEs) of an infectious, genetic, or sporadic nature and are characterized by neurodegeneration and protein aggregation. These diseases include kuru and Creutzfeldt-Jakob disease (CJD) in humans, scrapie in sheep and bovine spongiform encephalopathy (BSE), also known as "mad cow disease," among others. The diseases can affect subjects at distinct age groups, course with a variety of motor or cognitive symptoms, and although their prevalence is relatively low, TSEs are still incurable and invariably fatal (262). The pathogenesis of prion diseases is attributed to major changes in the metabolism of the cellular prion protein (PrP C). Current understanding of TSEs evolved from the concept of the "prion," that is, a proteinaceous, nucleic acid-free, infectious particle (427). 674 LINDEN ET AL.

Similar signature of the prion protein in natural sheep scrapie and bovine spongiform encephalopathy-linked diseases

Journal of clinical microbiology, 1999

It has been suggested that specific molecular features could characterize the protease-resistant prion protein (PrP res) detected in animal species as well as in humans infected by the infectious agent strain that causes bovine spongiform encephalopathy (BSE). Studies of glycoform patterns in such diseases in French cattle and cheetahs, as well as in mice infected by isolates from both species, revealed this characteristic molecular signature. Similar studies of 42 French isolates of natural scrapie, from 21 different flocks in different regions of France, however, showed levels of the three glycoforms comparable to those found in BSE-linked diseases. Moreover, the apparent molecular size of the unglycosylated form was also indistinguishable among all different sheep isolates, as well as isolates from BSE in cattle. Overall results suggest that scrapie cases with features similar to those of BSE could be found more frequently in sheep than previously described.

The pathogenic mechanisms of prion diseases

Mechanisms of Ageing and Development, 2002

Transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative diseases of humans and animals, including bovine spongiform encephalopathy (BSE) of cattle, scrapie of sheep, and Creutzfeldt Á/Jakob disease (CJD) of humans. Prion diseases have become an important issue in public health and in the scientific world not only due to the possible relationship between BSE and new variant CJD (nvCJD) but also due to the unique biological features of the infectious agent. Although the nature of the infectious agent and the pathogenic mechanisms of prion diseases are not fully understood, considerable evidence suggests that an abnormal form (PrP Sc ) of a host prion protein (PrP C ) may compose substantial parts of the infectious agent and that various factors such as oxidative stress and calcium cytotoxicity are associated with the pathogenesis of prion diseases. Here, we briefly review and discuss the pathogenic mechanisms of prion diseases. These advances in understandings of fundamental biology of prion diseases may open the possibilities for the prevention and treatment of these unusual diseases and also suggest applications in more common neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). #

Progress and problems in the biology, diagnostics, and therapeutics of prion diseases

Journal of Clinical Investigation, 2004

The term "prion" was introduced by Stanley Prusiner in 1982 to describe the atypical infectious agent that causes transmissible spongiform encephalopathies, a group of infectious neurodegenerative diseases that include scrapie in sheep, Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids, and bovine spongiform encephalopathy in cattle. Over the past twenty years, the word "prion" has been taken to signify various subtly different concepts. In this article, we refer to the prion as the transmissible principle underlying prion diseases, without necessarily implying any specific biochemical or structural identity. When Prusiner started his seminal work, the study of transmissible spongiform encephalopathies was undertaken by only a handful of scientists. Since that time, the "mad cow" crisis has put prion diseases on the agenda of both politicians and the media. Significant progress has been made in prion disease research, and many aspects of prion pathogenesis are now understood. And yet the diagnostic procedures available for prion diseases are not nearly as sensitive as they ought to be, and no therapeutic intervention has been shown to reliably affect the course of the diseases. This article reviews recent progress in the areas of pathogenesis of, diagnostics of, and therapy for prion diseases and highlights some conspicuous problems that remain to be addressed in each of these fields.

Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis

Journal of Neurochemistry, 2006

Neuronal vacuolation (spongiosis), neuronal death, and pronounced glial reactions are the hallmarks of transmissible spongiform encephalopathies (TSEs), or prion diseases. A wealth of physical, biochemical, and immunological evidence indicates that the TSE agent, termed prion, does not contain agent-specific nucleic acid encoding its own constituents, as is the case for all other infectious pathogens. Also, no adaptive immune responses are elicited upon infection. A defining feature of TSEs is the deposition, mainly in the brain and lymphoreticular tissues, of an aggregated and structurally abnormal protein, designated PrP Sc or PrP-res, which represents a conformational isomer of the ubiquitous surface protein PrP C . Biochemical and genetic evidence link PrP and its gene to the disease. Although TSEs are by definition transmissible, a growing number of Prnp-associated non-infectious neurodegenerative proteinopathies are now being recognized.

Neuropathology of Animal Prion Diseases

Biomolecules

Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are a fatal group of infectious, inherited and spontaneous neurodegenerative diseases affecting human and animals. They are caused by the conversion of cellular prion protein (PrPC) into a misfolded pathological isoform (PrPSc or prion- proteinaceous infectious particle) that self-propagates by conformational conversion of PrPC. Yet by an unknown mechanism, PrPC can fold into different PrPSc conformers that may result in different prion strains that display specific disease phenotype (incubation time, clinical signs and lesion profile). Although the pathways for neurodegeneration as well as the involvement of brain inflammation in these diseases are not well understood, the spongiform changes, neuronal loss, gliosis and accumulation of PrPSc are the characteristic neuropathological lesions. Scrapie affecting small ruminants was the first identified TSE and has been considered the archetype of prion diseases, though a...