Spin Noise Fluctuations from Paramagnetic Molecular Adsorbates on Surfaces (original) (raw)

Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance

Not all noise in experimental measurements is unwelcome. Certain fundamental noise sources contain valuable information about the system itself—a notable example being the inherent voltage fluctuations (Johnson noise) that exist across any resistor, which allow the temperature to be determined1,2. In magnetic systems, fundamental noise can exist in the form of random spin fluctuations3,4. For example, statistical fluctuations of N paramagnetic spins should generate measurable noise of order ffiffiffiffi N p spins, even in zero magnetic field5,6. Here we exploit this effect to perform perturbation-free magnetic resonance. We use offresonant Faraday rotation to passively7,8 detect the magnetization noise in an equilibrium ensemble of paramagnetic alkali atoms; the random fluctuations generate spontaneous spin coherences that precess and decay with the same characteristic energy and timescales as the macroscopic magnetization of an intentionally polarized or driven ensemble. Correlation spectra of the measured spin noise reveal g-factors, nuclear spin, isotope abundance ratios, hyperfine splittings, nuclear moments and spin coherence lifetimes—without having to excite, optically pump or otherwise drive the system away from thermal equilibrium. These noise signatures scale inversely with interaction volume, suggesting a possible route towards non-perturbative, sourceless magnetic resonance of small systems.

Optical Spectroscopy of Spin Noise

Physical Review Letters, 2013

Spontaneous fluctuations of the magnetization of a spin system in thermodynamic equilibrium (spin noise) manifest themselves as noise in the Faraday rotation of probe light. We show that the correlation properties of this noise over the optical spectrum can provide clear information about the composition of the spin system that is largely inaccessible for conventional linear optics. Such optical spectroscopy of spin noise, e.g., allows us to clearly distinguish between optical transitions associated with different spin subsystems, to resolve optical transitions that are unresolvable in the usual optical spectra, to unambiguously distinguish between homogeneously and inhomogeneously broadened optical bands, and to evaluate the degree of inhomogeneous broadening. These new possibilities are illustrated by theoretical calculations and by experiments on paramagnets with different degrees of inhomogeneous broadening of optical transitions [atomic vapors of 41 K and singly charged (In,Ga)As quantum dots].

Resources of polarimetric sensitivity in spin noise spectroscopy

Physical Review B, 2013

We attract attention to the fact that the ultimate (shot-noise-limited) polarimetric sensitivity can be enhanced by orders of magnitude leaving the photon flux incident onto the photodetector on the same low level. This opportunity is of crucial importance for present-day spin noise spectroscopy, where a direct increase of sensitivity by increasing the probe beam power is strongly restricted by the admissible input power of the broadband photodetectors. The gain in sensitivity is achieved by replacing the 45 • polarization geometry commonly used in conventional schemes with balanced detectors by geometries with stronger polarization extinction. The efficiency of these high-extinction polarization geometries with enhancement of the detected signal by more than an order of magnitude is demonstrated by measurements of the spin noise spectra of bulk n:GaAs in the spectral range 835 -918 nm. It is shown that the inevitable growth of the probe beam power with the sensitivity gain makes spin noise spectroscopy much more perturbative, but, at the same time, opens up fresh opportunities for studying nonlinear interactions of strong light fields with spin ensembles.

Measurements of spin properties of atomic systems in and out of equilibrium via noise spectroscopy

Optics Express, 2018

We explore the applications of spin noise spectroscopy (SNS) for detection of the spin properties of atomic ensembles in and out of equilibrium. In SNS, a linearly polarized far-detuned probe beam on passing through an ensemble of atomic spins acquires the information of the spin correlations of the system which is extracted using its time-resolved Faraday-rotation noise. We measure various atomic, magnetic and sub-atomic properties as well as perform precision magnetometry using SNS in rubidium atomic vapor in thermal equilibrium. Thereafter, we manipulate the relative spin populations between different ground state hyperfine levels of rubidium by controlled optical pumping which drives the system out of equilibrium. We then apply SNS to probe such spin imbalance nonperturbatively. We further use this driven atomic vapor to demonstrate that SNS can have better resolution than typical absorption spectroscopy in detecting spectral lines in the presence of various spectral broadening mechanisms. I. INTRODUCTION Control of spin population and its simultaneous nondestructive detection play a crucial role in diverse scientific fields such as atom interferometry [1], precision magnetometry [2], atomic clocks [3], quantum simulation [4] and quantum information processing [5]. While external magnetic fields and optical pumping can be used to manipulate the spin polarization and population in an atomic system, spin noise spectroscopy (SNS) [6-8] provides a means of the detection of such spin coherences

Spatiotemporal Spin Noise Spectroscopy

Physical Review Letters, 2019

We report on the potential of a new spin noise spectroscopy approach by demonstrating all-optical probing of spatiotemporal spin fluctuations. This is achieved by homodyne mixing of a spatially phasemodulated local oscillator with spin-flip scattered light, from which the frequency and wave vector dependence of the spin noise power is unveiled. As a first application of the method we measure the spatiotemporal spin noise in weakly n-doped CdTe layers, from which the electron spin diffusion constant and spin relaxation rates are determined. The absence of spatial spin correlations is also shown for this particular system.

Spin noise spectroscopy of quantum dot molecules

Physical Review B, 2013

We discuss advantages and limitations of the spin noise spectroscopy for characterization of interacting quantum dot systems on specific examples of individual singly and doubly charged quantum dot molecules (QDMs). It is shown that all the relevant parameters of the QDMs including tunneling amplitudes with spin-conserving and spin-non-conserving interactions, decoherence rates, Coulomb repulsions, anisotropic g-factors and the distance between the dots can be determined by measuring properties of the spin noise power spectrum.

Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

Scientific Reports, 2015

Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactionsunder conditions of strict thermal equilibrium-by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using ''two-color'' optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.

Spin noise spectroscopy beyond thermal equilibrium and linear response

Physical review letters, 2014

Per the fluctuation-dissipation theorem, the information obtained from spin fluctuation studies in thermal equilibrium is necessarily constrained by the system's linear response functions. However, by including weak radio frequency magnetic fields, we demonstrate that intrinsic and random spin fluctuations even in strictly unpolarized ensembles can reveal underlying patterns of correlation and coupling beyond linear response, and can be used to study nonequilibrium and even multiphoton coherent spin phenomena. We demonstrate this capability in a classical vapor of (41)K alkali atoms, where spin fluctuations alone directly reveal Rabi splittings, the formation of Mollow triplets and Autler-Townes doublets, ac Zeeman shifts, and even nonlinear multiphoton coherences.

Spin noise explores local magnetic fields in a semiconductor

Scientific reports, 2016

Rapid development of spin noise spectroscopy of the last decade has led to a number of remarkable achievements in the fields of both magnetic resonance and optical spectroscopy. In this report, we demonstrate a new - magnetometric - potential of the spin noise spectroscopy and use it to study magnetic fields acting upon electron spin-system of an n-GaAs layer in a high-Q microcavity probed by elliptically polarized light. Along with the external magnetic field, applied to the sample, the spin noise spectrum revealed the Overhauser field created by optically oriented nuclei and an additional, previously unobserved, field arising in the presence of circularly polarized light. This "optical field" is directed along the light propagation axis, with its sign determined by sign of the light helicity. We show that this field results from the optical Stark effect in the field of the elliptically polarized light. This conclusion is supported by theoretical estimates.