Genetic analysis of over one million people identifies 535 new loci associated with blood pressure traits (original) (raw)

Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

Nature genetics, 2018

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.

Genetic analysis of over one million people identifies 535 novel loci for blood pressure

High blood pressure is the foremost heritable global risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits to date (systolic, diastolic, pulse pressure) in over one million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also reveal shared loci influencing lifestyle exposures. Our findings offer the potential for a precision medicine strategy for future cardiovascular disease prevention.

Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk

Nature Genetics, 2017

Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. Combined with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure raising genetic variants on future cardiovascular disease risk.

Genome-wide analysis in over 1 million individuals reveals over 2,000 independent genetic signals for blood pressure

2022

Hypertension is a leading cause of premature death affecting more than a billion individuals worldwide. Here we report on the genetic determinants of blood pressure (BP) traits (systolic, diastolic, and pulse pressure) in the largest single-stage genome-wide analysis to date (N = 1,028,980 European-descent individuals). We identified 2,103 independent genetic signals (P < 5x10− 8) for BP traits, including 113 novel loci. These associations explain ~ 40% of common SNP heritability of systolic and diastolic BP. Comparison of top versus bottom deciles of polygenic risk scores (PRS) based on these results reveal clinically meaningful differences in BP (12.9 mm Hg for systolic BP, 95% CI 11.5–14.2 mm Hg, p = 9.08×10− 73) and hypertension risk (OR 5.41; 95% CI 4.12 to 7.10; P = 9.71×10− 33) in an independent dataset. Compared with the area under the curve (AUC) for hypertension discrimination for a model with sex, age, BMI, and genetic ancestry, adding systolic and diastolic BP PRS inc...

Eight blood pressure loci identified by genome-wide association study of 34,433 people of European ancestry

Nature …, 2009

Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5m genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N≤71,225 European ancestry, N=12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N=29,136). We identified association between systolic or diastolic blood pressure and common variants in 8 regions near the CYP17A1 (P=7×10−24), CYP1A2 (P=1×10−23), FGF5 (P=1×10−21), SH2B3 (P=3×10−18), MTHFR (P=2×10−13), c10orf107 (P=1×10−9), ZNF652 (P=5×10−9) and PLCD3 (P=1×10−8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.

The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

Nature genetics, 2016

To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond th...