APPLICATION OF HOMOTOPY ANALYSIS METHOD FOR SOLVING NONLINEAR PROBLEMS (original) (raw)
In this project we introduced an analytic approximation method for nonlinear problem in general, namely the homotopy analysis method. The homotopy analysis method (HAM) is an analytic approximation method for highly nonlinear problems, proposed by the Liao in 1992.Unlike perturbation techniques; the HAM is independent of any small/large physical parameters at all: one can always transfer a nonlinear problem into an infinite number of linear sub problems by means of the HAM. Secondly, different from all of other analytic techniques, the HAM provides us a convenient way to guarantee the convergence of solution series so that it is valid even if nonlinearity becomes rather strong. Besides, based on the homotopy in topology, it provides us extremely large freedom to choose equation type of linear sub-problems, base function of solution, initial guess and so on, so that complicated nonlinear ODEs and PDEs can often be solved in a simple way. In this project, the homotopy analysis method is employed to solve non linear problems; the results reveal that the proposed method is effective.