Thermodynamics and Entropy in Natural and Artificial Systems (original) (raw)

Natural thermodynamics

Physica A, 2015

h i g h l i g h t s • Thermodynamics is founded on the notion of quantum. • Entropy is derived from statistical mechanics of open systems. • The principle of increasing entropy equals the imperative of decreasing free energy. Geodesic Free energy Quantum Photon The principle of least action a b s t r a c t The principle of increasing entropy is derived from statistical physics of open systems assuming that quanta of actions, as undividable basic build blocks, embody everything. According to this tenet, all systems evolve from one state to another either by acquiring quanta from their surroundings or by discarding quanta to the surroundings in order to attain energetic balance in least time. These natural processes result in ubiquitous scale-free patterns: skewed distributions that accumulate in a sigmoid manner and hence span log-log scales mostly as straight lines. Moreover, the equation for least-time motions reveals that evolution is by nature a non-deterministic process. Although the obtained insight in thermodynamics from the notion of quanta in motion yields nothing new, it accentuates that contemporary comprehension is impaired when modeling evolution as a computable process by imposing conservation of energy and thereby ignoring that quantum of actions are the carriers of energy from the system to its surroundings.

It is not the entropy you produce, rather, how you produce it

Philosophical Transactions of the Royal Society B: Biological Sciences, 2010

The principle of maximum entropy production (MEP) seeks to better understand a large variety of the Earth's environmental and ecological systems by postulating that processes far from thermodynamic equilibrium will ‘adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate’. Our aim in this ‘outside view’, invited by Axel Kleidon, is to focus on what we think is an outstanding challenge for MEP and for irreversible thermodynamics in general: making specific predictions about the relative contribution of individual processes to entropy production. Using studies that compared entropy production in the atmosphere of a dry versus humid Earth, we show that two systems might have the same entropy production rate but very different internal dynamics of dissipation. Using the results of several of the papers in this special issue and a thought experiment, we show that components of life-containing systems can evolve to either lower or raise t...

Entropy: From Thermodynamics to Hydrology

Entropy, 2014

Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a) to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b) to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron) from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

The fourth law of thermodynamics: steepest entropy ascent

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

When thermodynamics is understood as the science (or art) of constructing effective models of natural phenomena by choosing a minimal level of description capable of capturing the essential features of the physical reality of interest, the scientific community has identified a set of general rules that the model must incorporate if it aspires to be consistent with the body of known experimental evidence. Some of these rules are believed to be so general that we think of them as laws of Nature, such as the great conservation principles, whose ‘greatness’ derives from their generality, as masterfully explained by Feynman in one of his legendary lectures. The second law of thermodynamics is universally contemplated among the great laws of Nature. In this paper, we show that in the past four decades, an enormous body of scientific research devoted to modelling the essential features of non-equilibrium natural phenomena has converged from many different directions and frameworks towards ...

Maximum entropy production in environmental and ecological systems

… of the Royal …, 2010

The coupled biosphere -atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere -atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.

The Elusive Nature of Entropy and Its Physical Meaning

Entropy is the most used and often abused concept in science, but also in philosophy and society. Further confusions are produced by some attempts to generalize entropy with similar but not the same concepts in other disciplines. The physical meaning of phenomenological, thermodynamic entropy is reasoned and elaborated by generalizing Clausius definition with inclusion of generated heat, since it is irrelevant if entropy is changed due to reversible heat transfer or irreversible heat generation. Irreversible, caloric heat transfer is introduced as complementing reversible heat transfer. It is also reasoned and thus proven why entropy cannot be destroyed but is always generated (and thus overall increased) locally and globally, at every space and time scales, without any exception. It is concluded that entropy is a thermal displacement (dynamic thermal-volume) of thermal energy due to absolute temperature as a thermal potential (dQ = TdS), and thus associated with thermal heat and absolute temperature, i.e., distribution of thermal energy within thermal micro-particles in space. Entropy is an integral measure of (random) thermal energy redistribution (due to heat transfer and/or irreversible heat generation) within a material system structure in space, per absolute temperature level: dS = dQ Sys /T = mC Sys dT/T, thus logarithmic integral function, with J/K unit. It may be also expressed as a measure of " thermal disorder " , being related to logarithm of number of all thermal, dynamic microstates W (their position and momenta), S = k B lnW, or to the sum of their logarithmic probabilities S = −k B ∑p i lnp i , that correspond to, or are consistent with the given thermodynamic macro-state. The number of thermal microstates W, is correlated with macro-properties temperature T and volume V for ideal gases. A system form and/or functional order or disorder are not (thermal) energy order/disorder and the former is not related to Thermodynamic entropy. Expanding entropy to any type of disorder or information is a source of many misconceptions. Granted, there are certain benefits of simplified statistical descriptions to better comprehend the randomness of thermal motion OPEN ACCESS Entropy 2014, 16 954 and related physical quantities, but the limitations should be stated so the generalizations are not overstretched and the real physics overlooked, or worse discredited.

Entropy 15 01152 v

Persistent misconceptions existing for dozens of years and influencing progress in various fields of science are sometimes encountered in the scientific and especially, the popular-science literature. The present brief review deals with two such interrelated misconceptions (misunderstandings). The first misunderstanding: entropy is a measure of disorder. This is an old and very common opinion. The second misconception is that the entropy production minimizes in the evolution of nonequilibrium systems. However, as it has recently become clear, evolution (progress) in Nature demonstrates the opposite, i.e., maximization of the entropy production. The principal questions connected with this maximization are considered herein. The two misconceptions mentioned above can lead to the apparent contradiction between the conclusions of modern thermodynamics and the basic conceptions of evolution existing in biology. In this regard, the analysis of these issues seems extremely important and timely as it contributes to the deeper understanding of the laws of development of the surrounding World and the place of humans in it.