A Secreted RNA Binding Protein Forms RNA- Stabilizing Granules in the Honeybee Royal Jelly (original) (raw)
Abstract
Graphical Abstract Highlights d Worker and royal jellies harbor robust RNA-binding activity d Major royal jelly protein 3 (MRJP-3) is the dietary RNA-binding factor d RNA stimulates higher-order assembly of MRJP-3 into extracellular RNP granules d MRJP-3 granules concentrate, stabilize, and enhance environmental RNA bioavailability
Figures (6)
Highlights Graphical Abstract
0 ee Se ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee (A) Experimental design for RNA detection in RJ. Hives were fed with a 10% sucrose solution with or without the addition of Alexa Fluor-488-labeled dsRNA (dsRNA’). (B) Immunohistochemistry-based detection of dsRNA* in RJ samples, which were reacted with Alexa Fluor-488 antibody. Scale bar represents 25 jum. (C) RJ proteins bind dsRNA. dsRNA-binding activity was tested using EMSA. Treatments included dsRNA mixed in Ru buffer, 10% RJ mixed with dsRNA, 10% RJ digested by Proteinase K (PK) and then mixed with dsRNA, 10% RJ mixed with dsRNA and then digested by PK, 10% RJ mixed with dsRNA and PK buffer, 27.3 uM purified BSA mixed with dsRNA, 10% Ru only, and 10% Ru only digested by PK. dsRNA (0.05 1M) was applied in all dsRNA-containing treatments. (D) Precipitation dynamics of dsRNA-protein complexes in RJ. Two percent RJ was mixed with increasing dsRNA concentrations. (E) MRUP-3 and its prion-like TRR. Amino acid sequence in bold: secretion signal peptide. Amino acid sequence highlighted in color: tandem repeats. Alignment of the tandem repeats, QN (in gray) and positively charged amino acids (in red). See also Figure S1 and Table S1.
Please cite this article in press as: Maori et al., A Secreted RNA Binding Protein Forms RNA-Stabilizing Granules in the Honeybee Royal Jelly, Molecul Cell (2019), https://doi.org/10.1016/j.molcel.2019.03.010
Figure 4. MRJP-3 RNP Granules Protect RNA From Degradation and Enhance RNA Bioavailability (A) MRJP-3-bound RNA is protected from RNase-A digestion. Treatments included ssRNA mixed with MRJP-3, ssRNA mixed with MRJP-3 followed by incu bation with PK, ssRNA mixed with MRUP-3 and RNase-A, ssRNA mixed with MRJP-3 and RNase-A followed by incubation with PK, ssRNA mixed with MRJP-1 and ssRNA mixed with MRJP-1 and RNase-A. ssRNA (0.3 uM) and MRJP-3 or MRJP-1 (42.8 1M) were used in all ssRNA- and protein-containing treatments RNase challenge was performed by introducing 5 pg RNase-A followed by 1 h incubation at room temperature. (B) RNase-A presence does not affect MRJP-3 RNPs. Images of RNPs formed with ssRNA* with or without RNase-A. ssRNA* (0.3 uM) and MRJP-3 or MRJP-" (42.8 uM) were used in all ssRNA*- and protein-containing treatments. RNase challenge was performed by introducing 5 1g RNase-A followed by 1-3 h incubatior at room temperature. Scale bar represents 2 «um. (C) dsRNA-MRUP-3 RNPs enhance unc-22 RNAi phenotype in C. elegans. Each treatment contained three biological repeats (n = 150 animals per treatment). Please cite this article in press as: Maori et al., A Secreted RNA Binding Protein Forms RNA-Stabilizing Granules in the Honeybee Royal Jelly, Molecu Cell (2019), https://doi.org/10.1016/j.molcel.2019.03.010
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (45)
- Albertova ´, V., Su, S., Brockmann, A., Gadau, J., and Albert, S. (2005). Organization and potential function of the mrjp3 locus in four honeybee spe- cies. J. Agric. Food Chem. 53, 8075-8081.
- Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11, R106.
- Boke, E., Ruer, M., W€ uhr, M., Coughlin, M., Lemaitre, R., Gygi, S.P., Alberti, S., Drechsel, D., Hyman, A.A., and Mitchison, T.J. (2016). Amyloid-like self- assembly of a cellular compartment. Cell 166, 637-650.
- Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
- Buck, A.H., Coakley, G., Simbari, F., McSorley, H.J., Quintana, J.F., Le Bihan, T., Kumar, S., Abreu-Goodger, C., Lear, M., Harcus, Y., et al. (2014). Exosomes secreted by nematode parasites transfer small RNAs to mamma- lian cells and modulate innate immunity. Nat. Commun. 5, 5488.
- Cai, Q., Qiao, L., Wang, M., He, B., Lin, F.-M., Palmquist, J., Huang, S.D., and Jin, H. (2018). Plants send small RNAs in extracellular vesicles to fungal path- ogen to silence virulence genes. Science 360, 1126-1129.
- Chan, Q.W.T., Melathopoulos, A.P., Pernal, S.F., and Foster, L.J. (2009). The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics 10, 387.
- Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G.-H., Peng, H., Zhang, X., Zhang, Y., et al. (2016). Sperm tsRNAs contribute to intergenera- tional inheritance of an acquired metabolic disorder. Science 351, 397-400.
- Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
- Federhen, S. (2012). The NCBI Taxonomy database. Nucleic Acids Res. 40, D136-D143.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
- Furusawa, T., Rakwal, R., Nam, H.W., Shibato, J., Agrawal, G.K., Kim, Y.S., Ogawa, Y., Yoshida, Y., Kouzuma, Y., Masuo, Y., and Yonekura, M. (2008). Comprehensive royal jelly (RJ) proteomics using one-and two-dimensional proteomics platforms reveals novel RJ proteins and potential phospho/glyco- proteins. J. Proteome Res. 7, 3194-3229.
- Garbian, Y., Maori, E., Kalev, H., Shafir, S., and Sela, I. (2012). Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathog. 8, e1003035.
- Halfmann, R., Alberti, S., Krishnan, R., Lyle, N., O'Donnell, C.W., King, O.D., Berger, B., Pappu, R.V., and Lindquist, S. (2011). Opposing effects of gluta- mine and asparagine govern prion formation by intrinsically disordered pro- teins. Mol. Cell 43, 72-84.
- Heidelberger, M., and Kendall, F.E. (1935). The precipitin reaction between type III pneumococcus polysaccharide and homologous antibody: III. A quan- titative study and a theory of the reaction mechanism. J. Exp. Med. 61, 563-591. Hunter, W., Ellis, J., Vanengelsdorp, D., Hayes, J., Westervelt, D., Glick, E., Williams, M., Sela, I., Maori, E., Pettis, J., et al. (2010). Large-scale field appli- cation of RNAi technology reducing Israeli acute paralysis virus disease in hon- ey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog. 6, e1001160.
- Hyman, A.A., Weber, C.A., and J€ ulicher, F. (2014). Liquid-liquid phase separa- tion in biology. Annu. Rev. Cell Dev. Biol. 30, 39-58.
- Kovacs, E., Tompa, P., Liliom, K., and Kalmar, L. (2010). Dual coding in alter- native reading frames correlates with intrinsic protein disorder. Proc. Natl. Acad. Sci. U S A 107, 5429-5434.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
- Liao, Y., Smyth, G.K., and Shi, W. (2013). The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108.
- Lin, Y., Protter, D.S.W., Rosen, M.K., and Parker, R. (2015). Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208-219.
- Maharana, S., Wang, J., Papadopoulos, D.K., Richter, D., Pozniakovsky, A., Poser, I., Bickle, M., Rizk, S., Guille ´n-Boixet, J., Franzmann, T.M., et al. (2018). RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918-921.
- Maori, E., Lavi, S., Mozes-Koch, R., Gantman, Y., Peretz, Y., Edelbaum, O., Tanne, E., and Sela, I. (2007). Isolation and characterization of Israeli acute 10 Molecular Cell 74, 1-11, May 2, 2019 Please cite this article in press as: Maori et al., A Secreted RNA Binding Protein Forms RNA-Stabilizing Granules in the Honeybee Royal Jelly, Molecular Cell (2019), https://doi.org/10.1016/j.molcel.2019.03.010
- paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diver- sity due to intra-and inter-species recombination. J. Gen. Virol. 88, 3428-3438.
- Maori, E., Paldi, N., Shafir, S., Kalev, H., Tsur, E., Glick, E., and Sela, I. (2009).
- IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 18, 55-60.
- Maori, E., Garbian, Y., Kunik, V., Mozes-Koch, R., and Malka, O. (2018). A transmissible RNA pathway in honey bees. bioRxiv. https://doi.org/10.1101/ 299800.
- Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10-12.
- McEwan, D.L., Weisman, A.S., and Hunter, C.P. (2012). Uptake of extracellular double-stranded RNA by SID-2. Mol. Cell 47, 746-754.
- McMenamin, A.J., and Genersch, E. (2015). Honey bee colony losses and associated viruses. Curr. Opin. Insect Sci. 8, 121-129.
- Michelitsch, M.D., and Weissman, J.S. (2000). A census of glutamine/aspara- gine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. U S A 97, 11910-11915.
- Molnar, A., Melnyk, C.W., Bassett, A., Hardcastle, T.J., Dunn, R., and Baulcombe, D.C. (2010). Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872-875.
- Okamoto, I., Taniguchi, Y., Kunikata, T., Kohno, K., Iwaki, K., Ikeda, M., and Kurimoto, M. (2003). Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sci. 73, 2029-2045.
- Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.
- R Development Core Team (2018). R: A language and environment for statis- tical computing (Vienna, Austria: R Foundation for Statistical Computing). http://www.R-project.org/.
- Randolt, K., Gimple, O., Geissendo ¨rfer, J., Reinders, J., Prusko, C., Mueller, M.J., Albert, S., Tautz, J., and Beier, H. (2008). Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch. Insect Biochem. Physiol. 69, 155-167.
- Scharlaken, B., de Graaf, D.C., Goossens, K., Peelman, L.J., and Jacobs, F.J. (2008). Differential gene expression in the honeybee head after a bacterial challenge. Dev. Comp. Immunol. 32, 883-889.
- Schorn, A.J., Gutbrod, M.J., LeBlanc, C., and Martienssen, R. (2017). LTR-ret- rotransposon control by tRNA-derived small RNAs. Cell 170, 61-71.e11.
- Shahid, S., Kim, G., Johnson, N.R., Wafula, E., Wang, F., Coruh, C., Bernal- Galeano, V., Phifer, T., dePamphilis, C.W., Westwood, J.H., and Axtell, M.J. (2018). MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82-85.
- Stocker, A., Schramel, P., Kettrup, A., and Bengsch, E. (2005). Trace and mineral elements in royal jelly and homeostatic effects. J. Trace Elem. Med. Biol. 19, 183-189.
- Tamura, S., Amano, S., Kono, T., Kondoh, J., Yamaguchi, K., Kobayashi, S., Ayabe, T., and Moriyama, T. (2009). Molecular characteristics and physiolog- ical functions of major royal jelly protein 1 oligomer. Proteomics 9, 5534-5543.
- Timmons, L., and Fire, A. (1998). Specific interference by ingested dsRNA. Nature 395, 854.
- Winston, W.M., Molodowitch, C., and Hunter, C.P. (2002). Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456-2459.
- Wright, G.A., Nicolson, S.W., and Shafir, S. (2018). Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327-344.
- Young, M.D., Wakefield, M.J., Smyth, G.K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14. Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., Lin, Z., Luo, J., Zheng, H., Wan, P., et al. (2017). Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet. 13, e1006946. Molecular Cell 74, 1-11, May 2, 2019 11
- Please cite this article in press as: Maori et al., A Secreted RNA Binding Protein Forms RNA-Stabilizing Granules in the Honeybee Royal Jelly, Molecular Cell (2019), https://doi.org/10.1016/j.molcel.2019.03.010