Oceanic loggerhead turtles Caretta caretta associate with thermal fronts: evidence from the Canary Current Large Marine Ecosystem (original) (raw)
Marine Ecology Progress Series, 2015
Abstract
ABSTRACT Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chlorophyll a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insights into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles Caretta caretta nesting at Cape Verde (n = 12), we tested the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s to 100s of km) thermal fronts. We used high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem over 2 temporal scales: (1) seasonal front frequency and (2) 7 d front metrics. Our use-availability analysis indicated that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.
Lucy Hawkes hasn't uploaded this paper.
Let Lucy know you want this paper to be uploaded.
Ask for this paper to be uploaded.