A STUDY ON ARTIFICIAL NEURAL NETWORKS (original) (raw)

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN): Artificial neural networks, usually simply called neural networks, are computing systems vaguely inspired by the biological neural networks that constitute animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Basic Structure of ANNs: The idea of ANNs is based on the belief that working of human brain by making the right connections, can be imitated using silicon and wires as living neurons and dendrites.

In Shortly about Neural Networks

A neural network is a collection of neurons that are interconnected and interactive through signal processing operations. The traditional term "neural network" refers to a biological neural network, i.e., a network of biological neurons. The modern meaning of this term also includes artificial neural networks, built of artificial neurons or nodes. Machine learning includes adaptive mechanisms that allow computers to learn from experience, learn by example and by analogy. Learning opportunities can improve the performance of an intelligent system over time. One of the most popular approaches to machine learning is artificial neural networks. An artificial neural network consists of several very simple and interconnected processors, called neurons, which are based on modeling biological neurons in the brain. Neurons are connected by calculated connections that pass signals from one neuron to another. Each connection has a numerical weight associated with it. Weights are the basis of long-term memory in artificial neural networks. They express strength or importance for each neuron input. An artificial neural network "learns" through repeated adjustments of these weights.

Paper Investigating ANNs and Applications

Artificial Neural Network (ANN) has emerged with advancement of Information and Communication technology and biological sciences during last decades. The aim is to utilize technology and construct machines that will work like brain of humans. The internal architectural requirements of such a machine is to have huge simultaneous memory and storage in consistent with intensive processing power to cater the ambiguous information and behave like human brain. ANN has broad range of applications in today's business and IT industry. This paper aims to investigate the working of ANN and its applications in real environment.

Research Paper on Basic of Artificial Neural Network

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. This is true of ANNs as well. This paper gives overview of Artificial Neural Network, working & training of ANN. It also explain the application and advantages of ANN.

COMPARISON AND ANAYSIS OF ANN BASED INTELLIGENT SYSTEMS

In new emerging techniques of information technology, neural network is also one. Now we see some information's about the neural network. The power and usefulness of artificial neural networks have been demonstrated in several applications including speech synthesis, diagnostic problems, medicine, business and finance, robotic control, signal processing, computer vision and many other problems

Artificial Neural Network-A Principle Behind IT

The use of neural network architecture in deep learning models is called as Artificial Neural Network (ANN). It is one of the most powerful machine learning algorithms applied to tasks across many domains. (finance, humanities, science. research and academics etc.). An ANN is a form of computation inspired by the structure and function of brain. [ Padhy, 2005] In this paper, we concentrate on the fundamentals of human neurons and how they are applied to artificial neurons to understand the principles of ANNs.

International Journal on Recent and Innovation Trends in Computing and Communication Research Paper on Basic of Artificial Neural Network

—An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. This is true of ANNs as well. This paper gives overview of Artificial Neural Network, working & training of ANN. It also explain the application and advantages of ANN.

Scholars Research Library Comparative study of biological and artificial neural networks

In this research project, the features of biological and artificial neural networks were studied by reviewing the existing works of authorities in print and electronics on biological and artificial neural networks. The features were then assessed and evaluated and comparative analysis of the two networks was carried out. The metrics such as structures, layers, size and functional capabilities of neurons, learning capabilities, style of computation, processing elements, processing speed, connections, strength, information storage, information transmission, communication media selection, signal transduction and fault tolerance were used as basis for comparison. A major finding in the research showed that artificial neural networks served as the platform for neuro-computing technology and as such a major driver of the development of neuron-like computing system. It was also discovered that Information processing of the future computer systems will greatly be influenced by the adoption of artificial neural network model.

Comparative study of biological and artificial neural networks

In this research project, the features of biological and artificial neural networks were studied by reviewing the existing works of authorities in print and electronics on biological and artificial neural networks. The features were then assessed and evaluated and comparative analysis of the two networks was carried out. The metrics such as structures, layers, size and functional capabilities of neurons, learning capabilities, style of computation, processing elements, processing speed, connections, strength, information storage, information transmission, communication media selection, signal transduction and fault tolerance were used as basis for comparison. A major finding in the research showed that artificial neural networks served as the platform for neuro-computing technology and as such a major driver of the development of neuron-like computing system. It was also discovered that Information processing of the future computer systems will greatly be influenced by the adoption of artificial neural network model.