Plant Phenolics: Important Bio-Weapon against Pathogens and Insect Herbivores (original) (raw)

Resistance against Insect Pests by Plant Phenolics and their Derivative Compounds

The chemical nature of plant phenolics varies from a simple monomeric unit to highly polymerized structures of varying proportions of monomeric aglycon units. Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced for protection against biotic stresses. The functions of phenolic compounds in plant physiology are difficult to overestimate. The phenolics provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexin secreted by wounded or otherwise perturbed plants, repel or kill many insect pests. Insects represent adaptive characters that have been subjected to natural selection during evolution. Plants synthesize a greater array of secondary compounds than animals, since plants cannot rely on physical mobility to escape their predators and have therefore evolved a chemical defense against such predators. This article reviews the role of plant phenols and polyphenols, interactions and their concern to resistance mechanisms against the insect pest stresses.

Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects

2006

Plant phenolics are secondary metabolites that encompass several classes structurally diverse of natural products biogenetically arising from the shikimate-phenylpropanoids-flavonoids pathways. Plants need phenolic compounds for pigmentation, growth, reproduction, resistance to pathogens and for many other functions. Therefore, they represent adaptive characters that have been subjected to natural

Role of Polyphenols in the Resistance Mechanisms of Plants Against Fungal Pathogens and Insects

Phytochemistry

Plant phenolics are secondary metabolites that encompass several classes structurally diverse of natural products biogenetically arising from the shikimate-phenylpropanoids-flavonoids pathways. Plants need phenolic compounds for pigmentation, growth, reproduction, resistance to pathogens and for many other functions. Therefore, they represent adaptive characters that have been subjected to natural Correspondence/Reprint request: Prof.

Phenolic Compounds: Introduction

Natural Products, 2013

Plant phenolics" and "polyphenols" are secondary natural metabolites arising biogenetically from either the shikimate/phenylpropanoid pathway, which directly provides phenylpropanoids, or the "polyketide" acetate/malonate pathway, which can produce simple phenols, or both, thus producing monomeric and polymeric phenols and polyphenols, which fulfill a very broad range of physiological roles in plants. Higher plants synthesize several thousand known different phenolic compounds. The ability to synthesize phenolic compounds has been selected throughout the course of evolution in different plant lineages, thus permitting plants to cope with the constantly changing environmental challenges over evolutionary time. Plant phenolics are considered to have a key role as defense compounds when environmental stresses, such as high light, low temperatures, pathogen infection, herbivores, and nutrient deficiency, can lead to an increased production of free radicals and other oxidative species in plants. Both biotic and abiotic stresses stimulate carbon fluxes from the primary to the secondary metabolic pathways,

Phenolics from Medicinal and Aromatic Plants: Characterisation and Potential as Biostimulants and Bioprotectants

Molecules

Biostimulants and bioprotectants are derived from natural sources and can enhance crop growth and protect crops from pests and pathogens, respectively. They have attracted much attention in the past few decades and contribute to a more sustainable and eco-friendly agricultural system. Despite not having been explored extensively, plant extracts and their component secondary metabolites, including phenolic compounds have been shown to have biostimulant effects on plants, including enhancement of growth attributes and yield, as well as bioprotectant effects, including antimicrobial, insecticidal, herbicidal and nematicidal effects. Medicinal and aromatic plants are widely distributed all over the world and are abundant sources of phenolic compounds. This paper reviews the characterisation of phenolic compounds and extracts from medicinal and aromatic plants, including a brief overview of their extraction, phytochemical screening and methods of analysis. The second part of the review h...

From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health

International Journal of Molecular Sciences, 2021

Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phyt...

Research on the involment of phenoloics in the defence of horticultural plants

Acta agriculturae Slovenica, 2016

Phenolic compounds are not directly involved in the primary metabolism of plants but possess a number of important roles: (1) serving as attractants for pollinators and various animals, involved in the transfer of seeds, (2) plant protection from herbivores and against pathogen infection, (3) defining plant-plant relationships and the symbiosis between plants and microbes. The present review of our research work stresses the role of phenolic compounds in the defense mechanism against different fungi and bacteria. It has been established, that the content of phenolics is greatly affected by the infection with pathogenic organisms. Studies on several horticultural plants have demonstrated that the response to infection differs among the analyzed plant species. Generally, an increase of phenolic compounds can be expected in tissues near the infection site. The comparison of healthy and infected tissue reflects an increase of phenolics in infected tissues. Higher levels of all analyzed ...

Plant phenolic compounds for food, pharmaceutical and cosmetiсs production

Journal of Medicinal Plants Research, 2012

The biochemical features and biological function of dietary phenols, which are widespread in the plant kingdom, have been described in the present review. The ways of phenols classification, which were collected from literature based on structural and biochemical characteristics with description of source and possible effects on human, organisms and environment have been presented. The bioactivities of phenolic compounds described in literature are reviewed to illustrate their potential for the development of pharmaceutical and agricultural products.

Role of secondary metabolites in plant defense against pathogens

Pathogens get entry into host cell, reproduce there and use biological machinery of host plants which is threat to global crop production. Integrated management strategies based upon minimizing population and use of resistant cultivars can address this potential problem. In developing world farmers are less likely to adopt these approaches instead they prefer the use of chemical pesticides. Reckless use of chemical pesticides is destroying our ecosystem. That's why it is required to explore ecofriendly alternatives, like plant based metabolites to control pathogens. Studies conducted on different plant-metabolites reported that these metabolite can potentially combat plant pathogens. In this study we have also discussed some of plant secondary metabolites including alkaloids, flavonoids and phenolics. In this review we tried to highlight the new trends in utilizing secondary metabolites for controlling bacterial, viral and fungal pathogens with the hope that upcoming drugs will be human and ecosystem friendly.

Phenolic compounds in plant disease resistance

Phytoparasitica, 1988

We propose that an important first line in plant defense against infection is provided by the very rapid synthesis of phenolics and their polymerization in the cell wall. This rapid synthesis, which leaves no time for de novo enzyme synthesis, is regulated by the extreme pH-dependence of the hydroxylase, catalyzing the formation of caffeoyl-CoA from 4-coumaroyl-CoA. We further propose that elicitor treatment or infection causes rapid membrane changes leading to a decrease in cytoplasmic pH. This decrease would have the effect of activating the hydroxylase.