Archeogrid: towards a National Conservatory of 3D Data of Cultural Heritage (original) (raw)

La documentazione grafica per lo studio dei beni archeologici attraverso la replica digitale 3D

UID : Unione Italiana per il Disegno : 2019 - Riflessioni : l'arte del disegno/ il disegno dell'arte, 2019

L’impiego delle tecnologie digitali per il rilievo in ambito archeologico sta profondamente modificando l’approccio tradizionale alla documentazione grafica di monumenti e siti. L’incremento nella produzione di modelli e repliche digitali tridimensionali richiede la messa a sistema di due elementi basilari: il controllo della validità metrica del dato 3d e la creazione di archivi centralizzati per la pubblicazione e la distribuzione delle risorse 3d. Entrambi questi aspetti si basano sull’adozione di procedure standard che consentano la validazione dell’oggetto digitale tridimensionale. The use of digital technologies for archaeological surveys is greatly changing the traditional approach to graphic documentation of monuments and sites. The increase in the production of threedimensional digital models and replicas requires the systemization of two basic elements: the control of the metric validity of the 3d data and the creation of centralized archives for the publication and distribution of 3d resources. Both of these aspects are based on the adoption of standard procedures that allow the validation of the three-dimensional digital object.

Scientific Reference Model – Defining standards, methodology and implementation of serious 3D models in Archaeology, Art and Architectural History

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISSN 2194-9034, 2023

In object-oriented historical research the need to combine hypotheses and textual arguments with the critical analysis based on sources – such as floor plans, sections, perspectives, and photographs – has considerably benefited from the developments in Digital Humanities (Münster, 2022). The use of digital 3D models has overcome many limitations inherent to two-dimensional records. Since the early 1990s hypothetical 3D reconstructions have therefore increasingly become routine research tools and essential means of representation capable of offering new methods of investigation, enabling new insights into the object-related research. In terms of a holistic approach to the analysis and case studies, i.e. the enhanced ability to examine and explore (Favro, 2012) serious challenges remain regarding documentation, interoperability and long-term access to 3D-based research outputs. In this context, numerous initiatives and research projects have emerged with the common objective of systematising and rationalising the various problems identified by scholars. Such projects still tend to remain isolated, lacking a significant impact on the community of potential users. 3D research outputs are not widely applicable, due to the complex prototypes of the software architecture, difficult to apply in a broad sense. Furthermore, the ‘old’ problems still exist, i.e. the traditional approaches - which do not consider a 3D model as a scholarly result, but only an investigative tool - and the reluctance to share these results and the associated procedures. Therefore, an attempt is being made to define the development and evaluation of an applicable methodology for the hypothetical 3D historical reconstruction, based on a shared theoretical approach. The working method presented here reflects many years of engagement with source-based hypothetical 3D reconstruction of no longer extant or unrealised architecture for teaching and research. Our focus is therefore on a low-threshold, application-oriented method of the Scientific Reference Model (SRM) as a documented and published basic model. The structured SRM represents an important working and knowledge state, which clarifies the essential information about the object, its components, its credibility or extent of hypothesis and copyright. Such SRM is made available for further research, edits and refinement, as well as further derivatives (special applications). Thus SRM represents a findable referential result of a scholarly investigation of a material object that physically no longer exists.

Architectural 3D modeling in historical buildings knowledge and restoration processes

The validation processes of restoration projects in all institutions are still based on communication and training requisites which continue to influence choices during the preparation of projects, and not only in purely formal terms, but also with respect to content. These requisites are paper documents and digital media, i.e. reproductions of paper documents in PDF format. Furthermore, project representation and communication are substantially established in two-dimensional form (plans, elevations, sections) with rare inroads into three-dimensional formats for explicative and integrative purposes (axonometric and/or perspective images), with the usual separateness, which is also logical and conceptual, between graphic representation and documentation, during the surveying and analysis phase and during the design phase. Even considering recent experiences related to the management of the reconstruction phase in the historical centres affected by the earthquake in L'Aquila on 6 April 2009, the intrinsic possibilities of using of architectural 3D modelling is to be examined, with the purpose of building an information system dedicated to architectural specificities, and to building the project proposal, fully directing its communicative complexity to the synthetic and interactive support of 3D modelling.

Maschek, D., Schneyder, M., Tschannerl, M. 2010. Virtual 3D reconstructions – benefit or danger for modern archaeology?

In recent years the importance of computer technology used in archaeological surveys has rapidly increased. Today there are numerous ways of “digital” support for the work of an archaeologist. Virtual 3D reconstruction is one of these methods. Although there are a lot of undisputed benefits of such digital work also dangers connected to this development exist. Due to the fact that it is pretty easy to rebuild objects virtually without much effort even people and companies with no primarily scientific approach or archaeological background are working on reconstructions. But to a major part every model is based on compromises and assumptions which need to be permanently reviewed by experts. This is necessary because 3D reconstructions mainly aim to look extremely realistic. So these models can be easily misunderstood as „resurrected reality”. Therefore there should be certain obligations to build the models on a scientific basement as well as to state that what is shown is only one out of numerous possible interpretations of the project’s “historic look”. But beside the criticism some of the benefits which arise out of an interdisciplinary synergy between artists and scientists should be mentioned as well. Foremost, working on 3D models gives us the chance to try out different ways of interpretation without doing any harm to the original. New or renewed results could be implemented with a few mouse-clicks and mistakes could be easily erased. So there is a high significance of well converted digital 3D modeling for archaeological research and its demand to find, survey and preserve historic structures for our future.

(2013) A 3D GIS METHOD APPLIED TO CATALOGING AND RESTORING: THE CASE OF AURELIAN WALLS AT ROME

The project involves architecture, archaeology, restoration, graphic documentation and computer imaging. The objective is development of a method for documentation of an architectural feature, based on a three-dimensional model obtained through laser scanning technologies, linked to a database developed in GIS environment. The case study concerns a short section of Rome's Aurelian walls, including the Porta Latina. The city walls are Rome's largest single architectural monument, subject to continuous deterioration, modification and maintenance since their original construction beginning in 271 AD. The documentation system provides a flexible, precise and easily-applied instrument for recording the full appearance, materials, stratification palimpsest and conservation status, in order to identify restoration criteria and intervention priorities, and to monitor and control the use and conservation of the walls over time. The project began with an analysis and documentation campaign integrating direct, traditional recording methods with indirect, topographic instrument and 3D laser scanning recording. These recording systems permitted development of a geographic information system based on three-dimensional modelling of separate, individual elements, linked to a database and related to the various stratigraphic horizons, the construction techniques, the component materials and their state of degradation. The investigations of the extant wall fabric were further compared to historic documentation, from both graphic and descriptive sources. The resulting model constitutes the core of the GIS system for this specific monument. The methodology is notable for its low cost, precision, practicality and thoroughness, and can be applied to the entire Aurelian wall and to other monuments.

Assessment, dissemination and standardization of geometric data recording of Archaeological Heritage obtained from 3D laser scanning

Archéovision 4, Editions Ausonius, Bordeaux

Pendant les dernières 10 années l’introduction de la technologie laser scanner 3D et les différentes applications numériques, ont supposé une révolution quant à conceptualisation, à la méthodologie et aux résultats dans le domaine la documentation, la standardisation et l’analyse géométrique du patrimoine culturel. La documentation du patrimoine archéologique à travers la technologie laser scanner 3D constitue une pièce clé dans la représentation fidèle de tout élément patrimonial, en plus de constituer un véritable dossier documentaire géométrique totalement reproductible diachroniquement, en utilisant également comme outil de contrôle de tout type de modification dans sa structure. Une des difficultés que représente la technologie laser scanner est le post processus et le manque méthodes ou processus normalisés qui permettent la gestion des données qu’il produit. On a détecté un gap scientifique qu’il puisse décrire comment représenter et conceptualiser les données géométriques. Celuici sans doute est un des facteurs que freine une plus grande divulgation de la technologie laser scanner comme instrument scientifique. Pour résoudre ce fait, il existe plusieurs points fondamentaux qui requièrent une attention spéciale entre les différentes méthodes de conceptualisation d’un projet : • Interactivité et comparaison de processus de registre en rapport avec d’autres disciplines INGÉNIERIE - INDUSTRIE - ENVIRONNEMENT. • Nouveau langage qui nous permet d’enregistrer la réalité, comme métaphore du terme industriel as built. • Standardisation de processus. Contrôle de qualité et vérification à travers des procédures. Principe d’authenticité. • Processus de démocratisation des résultats de 3D qui fournissent une diffusion et une divulgation, et de cette façon, une compréhension au grand public. • Méthodologie multidisciplinaire dans le processus d’étude coordonnée par un technicien spécialiste. • Adaptation du registre réel à un mécanicien cognitif par une extériorisation virtuelle. Dans ce travail on développe une méthodologie de registre, à travers des différents types techniques et instrumentation, avec un exemple d’intégration virtuelle d’art rupestre dans la Comarca del Matarraña (Teruel, Aragon), avec d’autres fragments extraits de son placement original qui se trouvent dans le Musée Archéologique de la Catalogne (Barcelone). La méthodologie permet la documentation d’abris rupestres dans son contexte, et de les intégrer de la même manière avec d’autres éléments extraits de son environnement naturel. Ce processus est développé à travers une technologie laser scanner combinée et associée avec d’autres techniques (topographie, photogrammétrie et géodésie), au bénéfice d’une analyse scientifique normalisée qui permet de reconstruire virtuellement toutes ses parties, en plus d’effectuer un contrôle périodique de sa structure qui prévoit tout type de pathologie morphologique. Une autre question fondamentale traite de la création d’une base de données normalisée à travers un environnement web 3D – formats type html, pdf 3D, vrml –, dirigé vers une plus grande divulgation du site archéologique de manière graphique et surtout géométrique, qui permet d’une façon rapide et précise la visualisation de tout élément ou d’une partie de sa structure. Pour cela on prétend un développement combiné, qui sert pour une plus grande valorisation et une divulgation de l’information obtenue, et qui contribue en plus à une étude scientifique interdisciplinaire qui résout les différents gaps méthodologiques et de conceptualisation. Mots-clés : laser scanner 3D, art rupestre, méthodologie, processus et standards, documentation géométrique du Patrimoine Archéologique.