Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics (original) (raw)

Proteome analysis of the plasma membrane of Mycobacterium tuberculosis

Comparative and Functional Genomics, 2002

The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI-MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as 'membrane-associated'; 14 of these were further classified as 'membrane-bound', three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting 'putative' M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium.

Purification and Characterization of a Low-Molecular-Mass T-Cell Antigen Secreted byMycobacterium tuberculosis

1995

A novel immunogenic antigen, the 6-kDa early secretory antigenic target (ESAT-6), from short-term culture filtrates of Mycobacterium tuberculosis was purified by hydrophobic interaction chromatography and anionexchange chromatography by use of fast protein liquid chromatography. The antigen focused at two different pIs of 4.0 and 4.5 during isoelectric focusing, and each of these components separated into three spots ranging from 4 to 6 kDa during two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent differences in molecular masses or pIs of these isoforms were not due to posttranslational glycosylation. The molecular weight of the purified native protein was determined by applying gel filtration and nondenaturing polyacrylamide gel electrophoresis and found to be 24 kDa. ESAT-6 is recognized by the murine monoclonal antibody HYB 76-8, which was used to screen a recombinant gt11 M. tuberculosis DNA library. A phage expressing a gene product recognized by HYB 76-8 was isolated, and a 1.7-kbp fragment of the mycobacterial DNA insert was sequenced. The structural gene of ESAT-6 was identified as the sequence encoding a polypeptide of 95 amino acids. The N terminus of the deduced sequence could be aligned with the 10 amino-terminal amino acids derived from sequence analyses of the native protein. N-terminal sequence analysis showed that the purified antigen was essentially free from contaminants, and the amino acid analysis of the antigen was in good agreement with the DNA sequence-deduced amino acid composition. Thus, the heterogeneities observed in the pI and molecular weight of the purified antigen do not derive from contaminating proteins but are most likely due to heterogeneity of the antigen itself.

Comprehensive Proteomic Profiling of the Membrane Constituents of a Mycobacterium tuberculosis Strain

Molecular & Cellular Proteomics, 2003

Mycobacterium tuberculosis is an infectious microorganism that causes human tuberculosis. The cell membranes of pathogens are known to be rich in possible diagnostic and therapeutic protein targets. To compliment the M. tuberculosis genome, we have profiled the membrane protein fraction of the M. tuberculosis H37Rv strain using an analytical platform that couples one-dimensional SDS gels to a microcapillary liquid chromatography-nanospray-tandem mass spectrometer. As a result, 739 proteins have been identified by two or more distinct peptide sequences and have been characterized. Interestingly, ϳ ϳ450 proteins represent novel identifications, 79 of which are membrane proteins and more than 100 of which are membrane-associated proteins. The physicochemical properties of the identified proteins were studied in detail, and then biological functions were obtained by sorting them according to Sanger Institute gene function category. Many membrane proteins were found to be involved in the cell envelope, and those proteins with energy metabolic functions were also identified in this study.

Nagai, S. et al. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect. Immun. 59, 372-382

Infection and Immunity

Five actively secreted proteins (MPT32, MPT45, MPT51, MPT53, and MPT63) and the MPT46 protein were purified to homogeneity from Mycobacterium tuberculosis culture fluid and compared with proteins previously purified by ourselves and other investigators. Antisera were obtained by immunization of rabbits with all of the newly isolated proteins identified to be immunogenic. Two-dimensional electrophoresis of culture fluids obtained each week for 2 to 10 weeks of culturing of M. tuberculosis revealed characteristic changes, permitting identification of two distinct groups of proteins being actively secreted from the mycobacterial cells or appearing later in the culture fluids as a result of the release of soluble proteins from the cytosol after lysis of bacteria. The N-terminal amino acid sequences of five MPTs were shown to be identical to those of proteins previously isolated by other investigators and given different designations, and five new sequences are given. These sequences and the use of the antisera may serve to identify these proteins with mycobacterial constituents isolated by other investigators. The previously identified but not isolated MPT45 protein was shown to correspond to the C component of the antigen 85 complex. The 27-kDa MPT51 protein was demonstrated to cross-react with the three components of the antigen 85 complex, and the N-terminal amino acid sequences of MPT51 and MPT59 showed 60% homology. This finding and the extensive cross-reactivity between the components of the antigen 85 complex may indicate that there is a family of closely related secreted proteins in mycobacteria.

Characterization of novel immunodominant antigens of Mycobacterium tuberculosis

Microbiology, 1998

Seven novel antigens of Mycobacterium tubersulosis, which had previously been identified based on reactivity to sera from patients with tuberculosis, were characterized. Nucleotide sequence analysis of the genes encoding these seven antigens identified one of them as the FtsH and a second as the aminoimidazole ribotide synthase of M. tuberculosis. Antisera raised to the recombinant forms of each of these seven antigens were used to study the distribution of these proteins within mycobacterial species as well as to determine their subcellular localization and hydrophobicity. Four of the seven antigens were conserved only among pathogenic strains of mycobacteria. Of the seven proteins studied, FtsH and a second protein of unknown identity were localized in membranes. Two were cytosolic, while two others, which had a high proline content, were tightly associated with the cell wall. One protein was secreted. This secreted protein could be identified by serum from a majority of tuberculosis patients but not BCG-vaccinated individuals, suggesting its potential use in the immunodiagnosis of tuberculosis.

[Comparison of the proteome of Mycobacterium tuberculosis with Bovine mycobacterium by immuno-proteomic technology]

Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases, 2011

To compare the proteome of Mycobacterium tuberculosis (MTB) H(37)Rv strain with Bovine mycobacterium (Bacillus Calmette-Guerin, BCG) strain at the sub-cellular level. Proteins of the cell wall, membrane and cytolymph of H(37)Rv and BCG were extracted by density gradient centrifugation. Sub-cellular proteome of H(37)Rv and BCG were analyzed using 2-dimensional liquid chromatography. The immunity reactions of H(37)Rv fractions with sera from patients (n = 5) and healthy controls (n = 5), as well as BCG fractions with sera from healthy controls (n = 5) were analyzed by ELISA. Data was analyzed by t test. Twenty-six fractions of H(37)Rv were found to elicit specific antibody response. Fraction M3Fr18 of H(37)Rv reacted with sera from patients. The A(450) [(721 ± 3) × 10(-3)] was higher than that with sera from healthy controls [(356 ± 6) × 10(-3)], as well as the A(450) of the corresponding fractions of BCG with sera from healthy controls [(414 ± 7) × 10(-3)]. The differences between th...

Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection

Electrophoresis, 2000

Mycobacterium tuberculosis is the infectious agent giving rise to human tuberculosis. The entire genome of M. tuberculosis, comprising approximately 4000 open reading frames, has been sequenced. The huge amount of information released from this project has facilitated proteome analysis of M. tuberculosis. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was applied to fractions derived from M. tuberculosis culture filtrate, cell wall, and cytosol, resulting in the resolution of 376, 413, and 395 spots, respectively, in silver-stained gels. By microsequencing and immunodetection, 38 culture filtrate proteins were identified and mapped, of which 12 were identified for the first time. In the same manner, 23 cell wall proteins and 19 cytosol proteins were identified and mapped, with 9 and 10, respectively, being novel proteins. One of the novel proteins was not predicted in the genome project, and for four of the identified proteins alternative start codons were suggested. Fourteen of the culture filtrate proteins were proposed to possess signal sequences. Seven of these proteins were microsequenced and the N-terminal sequences obtained confirmed the prediction. The data presented here are an important complement to the genetic information, and the established 2-D PAGE maps (also available at: www.ssi.dk/publichealth/tbimmun) provide a basis for comparative studies of protein expression.

Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins

Infection and immunity, 1998

Culture filtrate from Mycobacterium tuberculosis contains molecules which promote high levels of protective immunity in animal models of subunit vaccination against tuberculosis. We have used two-dimensional electrophoresis for analysis and purification of six novel M. tuberculosis culture filtrate proteins (CFPs): CFP17, CFP20, CFP21, CFP22, CFP25, and CFP28. The proteins were tested for recognition by M. tuberculosis-reactive memory cells from different strains of inbred mice and for their capacity to induce a skin test response in M. tuberculosis-infected guinea pigs. CFP17, CFP20, CFP21 and CFP25 induced both a high gamma interferon release and a strong delayed-type hypersensitivity response, and CFP21 was broadly recognized by different strains of inbred mice. N-terminal sequences were obtained for the six proteins, and the corresponding genes were identified in the Sanger M. tuberculosis genome database. In parallel we established a two-dimensional electrophoresis reference ma...

Identification of outer membrane proteins of Mycobacterium tuberculosis

Tuberculosis, 2008

The cell wall of mycobacteria contains an unusual outer membrane of extremely low permeability. While Escherichia coli uses more than 60 proteins to functionalize its outer membrane, only two mycobacterial outer membrane proteins (OMPs) are known. The porin MspA of Mycobacterium smegmatis provided the proof of principle that integral mycobacterial OMPs share the β-barrel structure, the absence of hydrophobic α-helices and the presence of a signal peptide with OMPs of gram-negative bacteria. These properties were exploited in a multi-step bioinformatic approach to predict OMPs of M. tuberculosis. A secondary structure analysis was performed for 587 proteins of M. tuberculosis predicted to be exported. Scores were calculated for the β-strand content and the amphiphilicity of the β-strands. Reference OMPs of gram-negative bacteria defined threshold values for these parameters that were met by 144 proteins of unknown function of M. tuberculosis. Two of them were verified as OMPs of unknown functions by a novel two-step experimental approach. Rv1698 and Rv1973 were detected only in the total membrane fraction of M. bovis BCG in Western blot experiments, while proteinase K digestion of whole cells showed the surface accessibility of these proteins. These findings established that Rv1698 and Rv1973 are indeed localized in the outer membrane and tripled the number of known OMPs of M. tuberculosis. Significantly, these results provide evidence for the usefulness of the bioinformatic approach to predict mycobacterial OMPs and indicate that M. tuberculosis likely has many OMPs with β-barrel structure. Our findings pave the way to identify the set of proteins which functionalize the outer membrane of M. tuberculosis.

Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein

Biochemical and Biophysical Research Communications, 2008

Identifying Mycobacterium tuberculosis membrane proteins involved in binding to and invasion of host cells is important in designing subunit-based anti-tuberculosis vaccines. The Rv2969c gene sequence was identified by PCR in M. tuberculosis complex strains, being transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra, and M. bovis BCG. Rabbits immunized with synthetic peptides from highly specific conserved regions of this protein produced antibodies recognizing 27 and 29 kDa bands in M. tuberculosis lysate, which is consistent with the molecular weight of the Rv2969c gene product in M. tuberculosis H37Rv. Immunoelectron microscopy revealed the protein was localized on the bacillus surface. Four and three specific high activity binding peptides (HABPs) to the A549 alveolar epithelial and U937 monocyte cell lines were found, respectively. Two of the HABPs found inhibited M. tuberculosis invasion of A549 cells, suggesting that these peptides might be good candidates to be included in a multiepitopic, subunitbased anti-tuberculosis vaccine.