Tuning the properties of complex transparent conducting oxides: Role of crystal symmetry, chemical composition, and carrier generation (original) (raw)

The electronic properties of single- and multi-cation transparent conducting oxides (TCOs) are investigated using first-principles density functional approach. A detailed comparison of the electronic band structure of stoichiometric and oxygen deficient In$_2$O$_3$, alpha\alphaalpha- and beta\betabeta-Ga$_2$O$_3$, rock salt and wurtzite ZnO, and layered InGaZnO$_4$ reveals the role of the following factors which govern the transport and optical properties of these TCO materials: (i) the crystal symmetry of the oxides, including both the oxygen coordination and the long-range structural anisotropy; (ii) the electronic configuration of the cation(s), specifically, the type of orbital(s) -- sss, ppp or ddd -- which form the conduction band; and (iii) the strength of the hybridization between the cation's states and the p-states of the neighboring oxygen atoms. The results not only explain the experimentally observed trends in the electrical conductivity in the single-cation TCO, but also demonstrate that multicomponent oxides may offer a way to overcome the electron localization bottleneck which limits the charge transport in wide-bandgap main-group metal oxides. Further, the advantages of aliovalent substitutional doping -- an alternative route to generate carriers in a TCO host -- are outlined based on the electronic band structure calculations of Sn, Ga, Ti and Zr-doped InGaZnO$_4$. We show that the transition metal dopants offer a possibility to improve conductivity without compromising the optical transmittance.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact