Theoretical study of the thermolysis reaction of ethyl beta-hydroxycarboxylates in the gas phase (original) (raw)

2002, Journal of Physical Chemistry A

Theoretical studies on the thermolysis of three ethyl -hydroxycarboxylates in the gas phase were carried out using ab initio theoretical methods, at the MP2/6-31G(d) and MP2/6-311++G(2d,p)//MP2/6-31G(d) levels of theory. Two competitive reaction pathways for the decomposition process have been studied. The first pathway describes a two-step mechanism, with the formation in a first step of an aldehyde, or a ketone, and an enol intermediate, followed by the tautomerization of this intermediate to ethyl acetate. The second pathway is a one-step mechanism with formation of ethylene and a carboxylic acid. Both processes occur via sixmembered cyclic transition states. The thermolysis is favorable along the first pathway with the first step as the rate-limiting step for the global process. The progress of the principal reactions was followed by means of the Wiberg bond indices. The results indicate that the transition states are late, and the calculated synchronicities show that the reactions are concerted and highly synchronous. The bond-breaking processes are more advanced than the bond-forming ones indicating a bond deficiency in the transition states. The kinetic parameters calculated for the studied reactions agree very well with the available experimental results. A theoretical study on the kinetic deuterium isotope primary, and Rand -secondary, effects has also been carried out.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.