Flow resistance in environmental channels: focus on vegetation (original) (raw)

2004, Helsinki University of Technology Water Resources Publications

This thesis aims to improve the reliability of the determination of flow resistance in environmentally acceptable channels and floodplains. Special emphasis was placed on addressing the hydraulic effects of vegetation. For this reason, laboratory flume studies with living vegetation were employed. The most notable finding was that, when compared to leafless conditions, the presence of leaves increased the friction factor up to seven-fold. This was strongly dependent on the flow velocity. In addition, the linkage between flow resistance, channel properties, and physical habitat was investigated. For this purpose, field studies were conducted in degraded, restored, and natural channel reaches. To determine friction factor f or Manning’s n for non-submerged woody vegetation, a new procedure based on the measurable characteristics of vegetation and flow was developed. A major advantage of this procedure over the old methods was its ability to estimate the flow resistance of woody vegetation in both leafless and leafy conditions. In determining the velocity profile and flow resistance caused by submerged flexible vegetation, the approach developed by Stephan (2002) was found to be suitable. However, a new formulation was proposed for the shear velocity based on deflected plant height. This modification offered better practical applicability than the original formulation, which requires complicated turbulence measurements. In the field studies, the experimental results for friction factors were, excluding those for low flows, in agreement with the values presented in the literature. Overall, the gathered field data from degraded, restored, and natural channel reaches formed a reference data set, which could be useful in other similar restoration or engineering projects. The field studies showed that both flow resistance and cross-sectional geometry were vital factors in determining local hydraulic conditions. The parameters defining these two factors were found to be simple but nonetheless valuable in evaluating the success of a project which aims to restore local hydraulics. A new procedure for applying the success criteria in the post-project evaluation of local hydraulics was developed.