Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium (original) (raw)

Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate

Agriculture

Biochar soil amendment can improve growing medium water and nutrient status and crop productivity. A pot experiment was conducted using Solanum lycopersicum var. cerasiforme plants to investigate the effects of biochar amendment (20% application rate) on a soilless substrate, as well as on plant growth, fruit yield, and quality. During the experiment, substrate characteristics, plant morphological traits, and root and leaf C/N content were analyzed at three sampling points defined as early stage (36 days after germination), vegetative stage (84 days a. g.), and fruit stage (140 days a. g.). Fruit morphological traits, titratable acidity, lycopene, and solid soluble content were measured at the end of the experiment. Biochar ameliorated substrate characteristics (Nav increase of 17% and Ctot increase of 13% at the beginning of the study), resulting in a promotion effect on plant root, shoot, and leaf morphology mainly at the vegetative and fruit stages. Indeed, at these two sampling ...

Effects of Biochar on Soil Properties and Tomato Growth

Agronomy

The paper aimed at evaluating the effects of biochar (BC) produced by slow pyrolysis of vine pruning residue on soil physicochemical properties and tomato plant growth. A greenhouse experiment was conducted for 66 days, applying different treatments for 3 soil types, i.e., foliar fertilizer, BC (at a volumetric ratio between BC and soil of 20/80), BC + foliar fertilizer, and no treatments. Strongly alkaline BC (pH = 9.89 ± 0.01) had a significant beneficial effect on the growth performance of tomato plants sown in a strongly acidic soil (pH = 5.40 ± 0.02). The mean values of height, number of leaves, and collar diameter of plants grown in BC-amended soil without foliar treatment were up to 50% higher than those of plants grown in soil with the other treatments. This positive effect of BC on plant growth is due to the changes in the soil properties. The addition of BC led to increased values of electrical conductivity, pH, soluble and available nutrient concentration. Moreover, BC re...

Effect of Biochar Application on Morpho-Physiological Traits, Yield, and Water Use Efficiency of Tomato Crop Under Water Quality and Deficit

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Therefore, the experiment was conducted to evaluate the effects of biochar application on the morpho-physiological traits and yield of tomatoes under combined salinity and drought stress into greenhouses. There were 16 treatments consist two water quality fresh and saline (0.9 and 2.3 dS m-1), three deficit irrigation levels (DI) 80, 60, and 40% addition 100% of ETc, and biochar application by rate 5% (BC5%) (w/w) and untreated soil (BC0%). The results indicated that the salinity and water deficit negatively affected morphological, physiological, and yield traits. In contrast, the application of biochar improved all traits. The interaction between biochar and saline water leads to decreased vegetative growth indices, leaf gas exc...

Biochar enhances yield and quality of tomato under reduced irrigation

Biochar is an amendment that can be used for enhancing soil water storage which may increase crop productivity. The objective of this study was to investigate the effects of biochar on physiology, yield and quality of tomato under different irrigation regimes. From early flowering to fruit maturity stages, the plants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation (PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot water holding capacity while in DI and PRD, 70% of FI was irrigated on either the whole or one side of the pots, respectively. In PRD, irrigation was switched between sides when the soil water content of the dry side decreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DI and PRD, which consequently improved physiology, yield, and quality of tomato as compared with the non-biochar control. However, leaf N content and chlorophyll content index (CCI) were decreased significantly in biochar treated plants. Furthermore, given a same irrigation volume, PRD offered advantages over DI in improving water use efficiency, leaf relative water content, membrane stability index and fruit yield. Overall, fruit quality was improved under reduced irrigation (i.e. DI and PRD) as compared with FI. It was concluded that incorporation of biochar under DI and particularly, PRD might be a novel approach to improve water productivity and quality of tomato.

Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media

Plant soil, 2010

The impact of additions (1-5% by weight) of a nutrient-poor, wood-derived biochar on pepper (Capsicum annuum L.) and tomato (Lycopersicum esculentum Mill.) plant development and productivity in a coconut fiber:tuff growing mix under optimal fertigation conditions was examined. Pepper plant development in the biochar-treated pots was significantly enhanced as compared with the unamended controls. This was reflected by a system-wide increase in most measured plant parameters: leaf area, canopy dry weight, number of nodes, and yields of buds, flowers and fruit. In addition to the observed Plant Soil (2010) 337:481-496

The Response of Nutrient Uptake, Photosynthesis and Yield of Tomato to Biochar Addition under Reduced Nitrogen Application

Agronomy, 2021

Tomato is an important economic crop that is widely consumed worldwide. Tomato production is mainly limited by the use of nitrogen fertilizer, sunlight, soil and water conditions. Biochar is one of the soil amendments, and it is recognized as a promising practice for improving crop production in agriculture. The effect of biochar on the photosynthetic traits and tomato yield under reduced nitrogen fertilizer application is still not well understood. The objective of this research is to investigate the influence of biochar application on the photosynthesis and yield of tomato under reduced nitrogen fertilizer application from the perspectives of the nutrient uptake of plants (nitrogen and phosphorus), leaf photosynthetic pigment and leaf gas exchange parameters. Two-year greenhouse experiments containing six biochar levels (0, 10, 30, 50, 70, and 90 t ha−1) and two nitrogen fertilizer application rates (190 and 250 kg ha−1) were conducted. Compared with C0, C50 significantly improved...

Biochar From Feedstock: A Strategy To Improve Agronomic Performances And Microbial Biomass of Tomato (Solanum Lycopersicum I.) Plant

2021

Tomato is beneficial to human health because it contains valuable vitamins such as vitamins A, C and several minerals. However, to meet up with the demands of the ever increasing population, there is need to improve tomato production. This research, investigated the impact of biochar derived from rice husk on agronomic performances of tomato plant. The rice husk biochar pyrolysed at 350 ºC was amended with soil at four different application rates: 0, 2.5, 5.0 and 7.5 t/ha. Physicochemical property of soil was conducted using Mid Infrared Reflectance Spectroscopy method. Impact of biochar on Microbial Biomass Carbon, Microbial Biomass Nitrogen and Microbial Biomass Phosphorous was conducted using fumigation extraction method and monitored at three functional stages. Biochar application appreciably increase the soil physicochemical properties such as pH, Ca, Na, H+, S, P, B, Zn and cation exchangeable capacity. Biochar amended soil significantly enhanced tomato height, fruit yields an...

The effect of biochar from rice husks on evapotranspiration, vegetative growth and fruit yield of greenhouse tomato cultivar anna F1 grown in two soil types

African Journal of Food, Agriculture, Nutrition and Development

Biochar made from crop residues has been shown to improve soil texture, soil porosity and soil structure. It can enhance fertilizer utilization, reduce leaching loses and hence improve nitrogen supply for plant growth. Utilization of biochar in preparation of potting substrates can enhance growth and yields of greenhouse tomato. A study was carried out to test the influence of rice husks biochar on substrate properties, growth and yield of greenhouse tomato. The experiment was carried as a factorial in completely randomized design with two factors: four biochar levels and two soil types, replicated three times. The biochar levels were volume ratios of 0 biochar: 1 soil (0Biochar), 0.25 biochar: 0.75 soil (0.25Biochar), 0.5 biochar: 0.5 soil (0.5Biochar) and 0.75 biochar: 0.25 soil (0.75Biochar). The two soil types used were the well drained deep red friable soil and imperfectly drained dark brown clay soil obtained from the University farm. Tomato Anna F1 was grown in four-liter pla...

Biochar amendments improves tomato growth, yield and irrigation water use efficiency under poor silt loam soil Zahir Talha 3

Biochar has been reported to improve soil physical, chemical and crop yield. This study presents a novel attempt to analysing the influence of biochar application eg. 0%, 2% and 4% w/w on the soil properties, growth, yield and water productivity of tomato plant under poor silt loam soil. To study influence of three different biochar application on the tomato performance, comprehensive experimental works was carried out using pots inside the greenhouse. The results showed soil bulk density, water content and soil organic matter were improved significantly as biochar application rate increased. Biochar application also enhanced plant height, stem diameter, plant fresh and dry weights and yield components of tomato plant. It was found that biochar application at 4% treatment in the whole growing period was best to improve tomato plant growth and yield, providing abiochar amendment recommendation for tomato production in field. Moreover, biochar application improved the irrigation water use efficiency. Therefore, biochar amendment could be an effective option to improvepoor soil which affected croplands.