SEN2-AGRI -CROP TYPE MAPPING PILOT STUDY USING SENTINEL-2 SATELLITE IMAGERY IN INDIA (original) (raw)

Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India)

Spatial Information Research, 2019

Rice is an important staple food for the billions of world population. Mapping the spatial distribution of paddy and predicting yields are crucial for food security measures. Over the last three decades, remote sensing techniques have been widely used for monitoring and management of agricultural systems. This study has employed Sentinel-based both optical (Sentinel-2B) and SAR (Sentinel-1A) sensors data for paddy acreage mapping in Sahibganj district, Jharkhand during the monsoon season in 2017. A robust machine learning Random Forest (RF) classification technique was deployed for the paddy acreage mapping. A simple linear regression yield model was developed for predicting yields. The key findings showed that the paddy acreage was about 68.3-77.8 thousand hectares based on Sentinel-1A and 2B satellite data, respectively. Accordingly, the paddy production of the district was estimated as 108-126 thousand tonnes. The paddy yield was predicted as 1.60 tonnes/hectare. The spatial distribution of paddy based on RF classifier and accuracy assessment of LULC maps revealed that the SAR-based classified paddy map was more consistent than the optical data. Nevertheless, this comprehensive study concluded that the SAR data could be more pronounced in acreage mapping and yield estimation for providing timely information to decision makers.

Comparing the Effectiveness of Different Machine Learning Algorithms for Crop Cover Classification Using Sentinel 2

International Journal of Environment and Climate Change

Crop cover mapping is an essential tool for controlling and enhancing agricultural productivity. By determining the spatial distribution of different crop types, solidified judgements regarding crop planning, crop management, and risk management can be made. Crop cover classification using optical data pose constraints in terms of spatial and spectral resolution. With Sentinel – 2 data providing the ground information at 10m resolution, users may choose the best spectral band combinations and temporal frame by analysing the spectral-temporal information of different crops. The crop categorization map for the Kallakurichi and Villupuram districts were created in this study using the Random Forest (RF) and Decision tree (C5.0) classifiers. The study mainly focuses on comparing the classification accuracy of two classifiers and figuring out the best classifiers for crop cover mapping with respect to the study area. The ground truth information collected, were partitioned into calibrati...

The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-arid Region

Remote Sensing in Earth Systems Sciences

The use of remote sensing data provides valuable information to ensure sustainable land cover management. In this paper, the potential of phenological metrics data, derived from Sentinel-2A (S2) and Landsat 8 (L8) NDVI time series, was evaluated using Random Forest (RF) classification to identify and map various crop classes over two irrigated perimeters in Morocco. The smoothed NDVI time series obtained by the TIMESAT software was used to extract profiles and phenological metrics, which constitute potential explanatory variables for cropland classification. The method of classification applied involves the use of a supervised Random Forest (RF) classifier. The results demonstrated the capability of moderate-to-high spatial resolution (10-30 m) satellite imagery to capture the phenological stages of different cropping systems over the study area. Furthermore, the classification based on S2 data presents a higher overall accuracy of 93% and a kappa coefficient of 0.91 than those produced by L8 data, which are 90% and 0.88, respectively. In other words, phenological metrics obtained from S2 time series data showed high potential for agricultural crop-types classification in semi-arid regions and thus can constitute a valuable tool for decision makers to use in managing and monitoring a complex landscape such as an irrigated perimeter.

Crop classification based on multi-temporal satellite remote sensing data for agro-advisory services

Land Surface Remote Sensing II, 2014

Using remote sensing images to classify crops to obtain spatial distribution of different crops is of great significance for crop yield estimation and agricultural policy formulation. Due to the phenomenon of the same spectrum from different materials or the phenomenon of the same materials with different spectrum, it is difficult to obtain accurate crop classification results from single-phase images. We take a farm in Lintong District of Xi'an as the research area. The crops in this study area are mostly cross-planted, and the planting area is small, so it is difficult for the traditional classification method. In order to increase classification accuracy, a multilevel classification method is proposed in this paper. The Sentinel-1 backscattering coefficient (Sigma) of image is used to pre-classify the ground in the study area, and the Sentinel-2 images which cover the crop growth cycle in the study area are used to construct a normalized vegetation index (NDVI) time series to distinguish the growth differences of different crops. Combined with field survey data and phenological characteristics of crops, on the basis of pre-classification, SVM (Support Vector Machine) method is used to classify Sentinel-2 images. The classification accuracy reaches 98.07%, which is much higher than the minimum distance, Mahalanobis distance, neural network, expert decision tree, object-oriented and other classification methods.

Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping

Applied Sciences, 2021

Crop identification is key to global food security. Due to the large scale of crop estimation, the science of remote sensing was able to do well in this field. The purpose of this study is to study the shortcomings and strengths of combined radar data and optical images to identify the type of crops in Tarom region (Iran). For this purpose, Sentinel 1 and Sentinel 2 images were used to create a map in the study area. The Sentinel 1 data came from Google Earth Engine’s (GEE) Level-1 Ground Range Detected (GRD) Interferometric Wide Swath (IW) product. Sentinel 1 radar observations were projected onto a standard 10-m grid in GRD output. The Sen2Cor method was used to mask for clouds and cloud shadows, and the Sentinel 2 Level-1C data was sourced from the Copernicus Open Access Hub. To estimate the purpose of classification, stochastic forest classification method was used to predict classification accuracy. Using seven types of crops, the classification map of the 2020 growth season in Tarom was prepared using 10-day Sentinel 2 smooth mosaic NDVI and 12-day Sentinel 1 back mosaic. Kappa coefficient of 0.75 and a maximum accuracy of 85% were reported in this study. To achieve maximum classification accuracy, it is recommended to use a combination of radar and optical data, as this combination increases the chances of examining the details compared to the single-sensor classification method and achieves more reliable information.

Lowland Rice Mapping in Sédhiou Region (Senegal) Using Sentinel 1 and Sentinel 2 Data and Random Forest

Remote Sensing

In developing countries, information on the area and spatial distribution of paddy rice fields is an essential requirement for ensuring food security and facilitating targeted actions of both technical assistance and restoration of degraded production areas. In this study, Sentinel 1 (S1) and Sentinel 2 (S2) imagery was used to map lowland rice crop areas in the Sédhiou region (Senegal) for the 2017, 2018, and 2019 growing seasons using the Random Forest (RF) algorithm. Ground sample datasets were annually collected (416, 455, and 400 samples) for training and testing yearly RF classification. A procedure was preliminarily applied to process S2 scenes and yield a normalized difference vegetation index (NDVI) time series less affected by clouds. A total of 93 predictors were calculated from S2 NDVI time series and S1 vertical transmit–horizontal receive (VH) and vertical transmit–vertical receive (VV) backscatters. Guided regularized random forest (GRRF) was used to deal with the ari...

Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches

European Journal of Remote Sensing

Accurate agricultural land use (LU) map is essential for many agro-environmental applications. With advances in technology, object-based image classification and non-parametric machine learning algorithms evolved. Still, no particular method has universal applicability. This paper compares robust non-parametric machine learning algorithms, random forest (RF) and support vector machine (SVM), and a common parametric algorithm maximum likelihood (MLC) based on multiple Landsat 8 images. We have also assessed the classifier performance relative to the choice either pixel-based (PB) or field-based (FB) approach. The study area, a semi-desert irrigated region, lies in Khorezm province and Republic of Karakalpakstan in Uzbekistan. Accuracy assessment showed higher overall accuracy (OA) and kappa index (KI) of the nonparametric machine learning FB-RF and FB-SVM algorithms over the PB-RF, PB-SVM and PB-MLC algorithms. The lowest OA and KI occurred with the parametric FB-MLC. Based on the results, the FB machine learning non-parametric algorithms are recommended for mapping irrigated croplands.

A random forest-based framework for crop mapping using temporal, spectral, textural and polarimetric observations

International Journal of Remote Sensing, 2019

Combining optical and polarimetric synthetic aperture radar (PolSAR) earth observations offers a complementary data set with a significant number of spectral, textural, and polarimetric features for crop mapping and monitoring. Moreover, a temporal combination of both sources of information may lead to obtaining more reliable results compared to the use of single-time observations. In this paper, an operational framework based on the stacked generalization of random forest (RF), which efficiently employed bi-temporal observations of optical and radar data, was proposed for crop mapping. In the first step, various spectral, vegetation index, textural, and polarimetric features were extracted from both data sources and placed into several groups. Each group was classified separately using a single RF classifier. Then, several additional classification tasks were accomplished by another RF classifier. The earth observations used in this paper were collected by RapidEye satellites and the Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) system over an agricultural region near Winnipeg, Manitoba, Canada. The results confirmed that the proposed methodology was able to provide a higher overall accuracy and kappa coefficient than traditional stacking method, and also than all the individual RFs using each group. These accuracy metrics were also better than those of the RFs using the stacked features. Moreover, only the proposed methodology could achieve standard accuracy (F-score ≥85%) for all crop types in the study area. The visual comparison also demonstrated that the crop maps produced by the proposed methodology had more homogeneous, uniform appearances. Moreover, the mixed pixels of crop types, which abundantly existed in the traditional stacking and individual RFs̕ maps, were significantly eliminated.

Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area

Scientifica

The monitoring of cultivated crops and the types of different land covers is a relevant environmental and economic issue for agricultural lands management and crop yield prediction. In this context, this paper aims to use and evaluate the contribution of multisensors classification based on machine learning classifiers to crop-type identification in a semiarid area of Morocco. It is a very heterogeneous zone characterized by mixed crops (tree crops with annual crops, same crop with different phenological states during the same agricultural season, crop rotation, etc.). Therefore, such heterogeneity made the crop-type discrimination more complicated. To overcome these challenges, the present work is the first study in this area which used the fusion of high spatiotemporal resolution Sentinel-1 and Sentinel-2 satellite images for land use and land cover mapping. Three machine learning classifier algorithms, artificial neural network (ANN), support vector machine (SVM), and maximum lik...

Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape

Remote Sensing

This paper shows the efficiency of machine learning for improving land use/cover classification from synthetic aperture radar (SAR) satellite imagery as a tool that can be used in some sub-Saharan countries that experience frequent clouds. Indeed, we aimed to map the land use and land cover, especially in agricultural areas, using SAR C-band Sentinel-1 (S-1) time-series data over our study area, located in the Kaffrine region of Senegal. We assessed the performance and the processing time of three machine-learning classifiers applied on two inputs. In fact, we applied the random forest (RF), K-D tree K-nearest neighbor (KDtKNN), and maximum likelihood (MLL) classifiers using two separate inputs, namely a set of monthly S-1 time-series data acquired during 2020 and the principal components (PCs) of the time-series dataset. In addition, the RF and KDtKNN classifiers were processed using different tree numbers for RF (10, 15, 50, and 100) and different neighbor numbers for KDtKNN (5, 1...