Cysteine protease falcipain 1 in Plasmodium falciparum is biochemically distinct from its isozymes (original) (raw)
Falcipains form a class of papain-like cysteine proteases found in Plasmodium falciparum. This group of proteases has been suggested to be promising targets for anti-malarial chemotherapy. Despite being the first falcipain to be identified, the physiological role(s) of falcipain 1 (fp1) remains a mystery. Its suggested functions include haemoglobin degradation, erythrocytic invasion and oocyst production. In this study, the procurement of the gene coding for fp1 and its soluble expression in a heterologous host, Escherichia coli, have enabled further enzyme characterization. The recombinant fp1 protease was found to be unlike falcipain 2 (fp2A) in being more active at neutral pH than at acidic pH against the Z-LR-AMC fluorogenic substrate, suggesting a probable localization in the cytosol and not in the food vacuole. Interestingly, a common cysteine specific inhibitor, E64, did not inhibit fp1 activity, indicating dissimilar biochemical characteristics of fp1 from the other falcipains. This may be explained by computational analysis of the primary structures of the falcipain isozymes, as well as that of papain. The analysis revealed that Tyr61 (papain numbering), which is correspondingly absent in fp1, might be an important residue involved in E64 substrate binding.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact