Polycaprolactone Nanofibrous Materials As an Efficient Dry Eye Test Strip (original) (raw)

In vitro and in vivo ocular biocompatibility of electrospun poly(ɛ-caprolactone) nanofibers

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2015

Biocompatibility is a requirement for the development of nanofibers for ophthalmic applications. In this study, nanofibers were elaborated using poly(ε-caprolactone) via electrospinning. The ocular biocompatibility of this material was investigated. MIO-M1 and ARPE-19 cell cultures were incubated with nanofibers and cellular responses were monitored by viability and morphology. The in vitro biocompatibility revealed that the nanofibers were not cytotoxic to the ocular cells. These cells exposed to the nanofibers proliferated and formed an organized monolayer. ARPE-19 and MIO-M1 cells were capable of expressing GFAP, respectively, demonstrating their functionality. Nanofibers were inserted into the vitreous cavity of the rat's eye for 10days and the in vivo biocompatibility was investigated using Optical Coherence Tomography (OCT), histology and measuring the expression of pro-inflammatory genes (IL-1β, TNF-α, VEGF and iNOS) (real-time PCR). The OCT and the histological analyzes ...

Electrospun Polycaprolactone Nanofibers: Current Research and Applications in Biomedical Application

Advanced Pharmaceutical Bulletin

Unique mechanical properties, miscibility potency, and biodegradability are the three prominent features of Polycaprolactone (PCL), making it an attractive biomaterial which commonly applied in regenerative medicine and biomedical engineering. Different strategies developed for fabricating nanofibrous construct, electrospinning is a practical, simple, and efficient technique based on electro-hydrodynamic systems that use an electrified viscous fluid jet drawn by the air toward a collector at a changing electric potential. PCL electrospun-based nanofibrous composites as proper scaffolds are employed in stem cell-related research, particularly in tissue engineering, wound dressing, and systems designed for sending drugs. A compilation of mechanochemical properties and most common biological performance on PCL-based electrospun fibrous structures in biomedical application are included in this study. Therefore, electrospun PCL nanofiber applying has been presented, and after that, curre...

A Study of Electrospinning and Characterization of Poly (Ɛ-caprolactone) Nanofibers

2018

Nanofibers of poly (Ɛ-caprolactone) (PCL) were produced by electrospinning a 10 wt% solution of PCL/Chloroform and ethanol at room temperature. For electrospinning the voltage was varied from 15-30 kV in seven regular intervals while keeping the feed rate (0.5 ml/h) and needle tip to collector distance (25 cm) constant at ambient atmospheric conditions (22 ± 2˚C and 40% R.H). This led to the study that how voltage variations effect the final morphology and diameter of nanofibers. SEM micrographs of the samples elaborated their morphology as heterogeneous and homogeneous mixing of nanofibers and their diameters ranging from 90-200 nm. Moreover, the crystallinity ratio (C.R) and thermal behavior of pure PCL and its electrospun nanofibers were studied using Differential Scanning Calorimeter (DSC). Results showed that the Tg of pure PCL and of nanofibers was same as -63.8˚C and the crystallinity ratio of pure PCL was 40% that increased to 50% after electrospinning. A viscosity analysis ...

Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study

Molecular vision, 2011

The aim of this study was to develop a synthetic stromal substrate for limbal epithelial cell (LEC) expansion that can serve as a potential alternative substrate to replace human amniotic membrane (HAM). Nanofibers were fabricated using 10% poly-ε-caprolactone (PCL) solution dissolved in trifluoroethanol (TFE) via an electrospinning process. Nanofibers were characterized for surface morphology, wetting ability, pore size, mechanical strength, and optical transparency using scanning electron microscopy (SEM), contact angle measurement, microtensile tester, and UV-Vis spectrophotometer, respectively. The human corneal epithelial (HCE-T) cell line was used to evaluate the biocompatibility of nanofibers based on their phenotypic profile, viability, proliferation, and attachment ability. Subsequently, human LECs were cultivated on biocompatible nanofibers for two weeks and their proliferation capability analyzed using MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a ...

Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery

Pharmaceutics

The poor ocular bioavailability of melatonin (MEL) limits the therapeutic action the molecule could exert in the treatment of ocular diseases. To date, no study has explored the use of nanofiber-based inserts to prolong ocular surface contact time and improve MEL delivery. Here, the electrospinning technique was proposed to prepare poly (vinyl alcohol) (PVA) and poly (lactic acid) (PLA) nanofiber inserts. Both nanofibers were produced with different concentrations of MEL and with or without the addition of Tween® 80. Nanofibers morphology was evaluated by scanning electron microscopy. Thermal and spectroscopic analyses were performed to characterize the state of MEL in the scaffolds. MEL release profiles were observed under simulated physiological conditions (pH 7.4, 37 °C). The swelling behavior was evaluated by a gravimetric method. The results confirmed that submicron-sized nanofibrous structures were obtained with MEL in the amorphous state. Different MEL release rates were achi...

Use of Polycaprolactone Electrospun Nanofiber Mesh in a Face Mask

Materials

Electrospun nanofiber mesh has previously been used as an air filtration device. However, the qualification of polycaprolactone (PCL) nanofiber mesh cloth in face masks to protect individuals against airborne particles carrying microorganisms has yet to be investigated. The long-term goal of this study is to develop methods to use PCL nanofiber mesh to provide better protection against microorganisms. To achieve this goal, we observed the morphology, water droplet absorption, thermal (differential scanning calorimetry), mechanical, and airborne particle filtering capabilities, and also the microbial activities of a PCL cloth, to evaluate whether it is suitable to act as a filter in a face mask. We have produced a polycaprolactone (PCL) nanofiber cloth after electrospinning it onto a drum for 3 and 10 min, referred to hereafter as PCL-3 and PCL-10, respectively. Our study found that the middle protection layer (control) of the Henry Schein Earloop Procedure Mask contains pores (avera...