Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review (original) (raw)
Related papers
Chemical biology letters, 2024
Protein kinase cascades activate extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases (MAPKs), which are involved in a variety of signal transduction pathways. This article will review the present state of MAPK pathway inhibitors, emphasizing the characteristics of tiny molecule blockers of the p38, MEK1, and MEK2 protein kinases. Many of these inhibitors have shown potential in experimental animal models of disease, and they are now being investigated in people for inflammatory and cancer diseases. Clinical trials are currently evaluating targeting a subset of cellular signaling cascades and signaling cascades that control pleiotropic cellular activity. These activities will have far-reaching consequences for managing a wide range of disorders. On the other hand, the Ras-Raf-MEK-ERK pathway is a clear therapeutic target because it is a standard downstream route for a range of critical growth factor tyrosine kinase receptors frequently changed or overexpressed in human malignancies. Several new medicines that target this route have been discovered and are currently being tested in clinical studies. BAY 43-9006 is one of the most intriguing new agents. Its ability to target Flt-3, c-Kit, and VEGFR-2, despite its initial development as a Raf kinase inhibitor, helps to explain its antiproliferative and antiangiogenic properties. This study will examine the ERK signaling pathway in both malignant and normal tissue, with an emphasis on new therapeutic approaches that target the ERK cascade at the Raf kinase level.
A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer
Cancers, 2019
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells an...
Drug Resistance Updates, 2007
Accumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to "targeted" agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in hematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects.
Journal of Pharmacology and Experimental Therapeutics, 2009
The extracellular signal-regulated (ERK), mitogen-activated protein kinase (p42/p44 MAPK) pathway is up-regulated in hepatocellular carcinoma (HCC). Molecular targeting of this critical mitogenic pathway may have therapeutic potential for the treatment of HCC; however, chemoresistance to long-term therapy may develop. In the present study, we employed smallmolecule MAPK kinase (MEK) inhibitors, including U0126 [1,4diamino-2,3-dicyano-1,4-bis(2-aminophynyltio)butadiene] and PD184161 (Neoplasia 8:1-8, 2006), in HepG2 and Hep3B human HCC cell lines to identify potential mechanism(s) of resistance. U0126 dose-dependently suppressed ERK phosphorylation at both 1-and 24-h time points in HepG2 cells, previously shown to be sensitive to growth inhibition by U0126. In contrast, ERK phosphorylation was only decreased at the 1-h time point but not at 24 h in the more resistant Hep3B cells. It is
Targeting the Mitogen-Activated Protein Kinase Pathway: Physiological Feedback and Drug Response
Clinical Cancer Research, 2010
Mitogen-activated protein kinase (MAPK) pathway activation is a frequent event in human cancer and is often the result of activating mutations in the BRAF and RAS oncogenes. Targeted inhibitors of BRAF and its downstream effectors are in various stages of preclinical and clinical development. These agents offer the possibility of greater efficacy and less toxicity than current therapies for tumors driven by oncogenic mutations in the MAPK pathway. Early clinical results with the BRAF-selective inhibitor PLX4032 suggest that this strategy will prove successful in a select group of patients whose tumors are driven by V600E BRAF. Relief of physiologic feedback upon pathway inhibition may, however, attenuate drug response and contribute to the development of acquired resistance. An improved understanding of the adaptive response of cancer cells to MAPK pathway inhibition may thus aid in the identification of those patients most likely to respond to targeted pathway inhibitors and provide a rational basis for tailored combination strategies. Clin Cancer Res; 16(13); 3329-34.
Molecular Cancer Therapeutics, 2010
Targeting the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway represents a promising anticancer strategy. Recently, we have reported a novel class of potent and selective non-ATP-competitive MEK1/2 inhibitors with a unique structure and mechanism of action. RO5068760 is a representative of this class showing significant efficacy in a broad spectrum of tumors with aberrant mitogen-activated protein kinase pathway activation. To understand the relationship between systemic exposures and target (MEK1/2) inhibition as well as tumor growth inhibition, the current study presents a detailed in vivo characterization of efficacy, pharmacokinetics, and pharmacodynamics of RO5068760 in multiple xenograft tumor models. For inhibition of MEK1/2 as measured by the phosphorylated ERK levels, the estimated EC 50 s in plasma were 1.36 μmol/L (880 ng/mL) and 3.35 μmol/L (2168 ng/mL) in LOX melanoma and HT-29 colorectal cancer models, respectively. A similar EC 50 (1.41 μmol/L or 915 ng/mL) was observed in monkey peripheral blood lymphocytes. To achieve tumor growth inhibition (≥90%), an average plasma drug concentration of 0.65 or 5.23 μmol/L was required in B-RafV600E or K-Ras mutant tumor models, respectively, which were remarkably similar to the IC 90 values (0.64 or 4.1 μmol/L) determined in vitro for cellular growth inhibition. With equivalent in vivo systemic exposures, RO5068760 showed superior efficacy in tumors harboring B-RafV600E mutation. The plasma concentration time profiles indicate that constant pERK suppression (>50%) may not be required for optimal efficacy, especially in highly responsive tumors. This study may facilitate future clinical trial design in using biochemical markers for early proof of mechanism and in selecting the right patients and optimal dose regimen. Mol Cancer Ther; 9(1); 134-44. ©2010 AACR.
Cell research, 2018
Activation of the mitogen-activated protein kinase (MAPK) pathway is frequent in cancer. Drug development efforts have been focused on kinases in this pathway, most notably on RAF and MEK. We show here that MEK inhibition activates JNK-JUN signaling through suppression of DUSP4, leading to activation of HER Receptor Tyrosine Kinases. This stimulates the MAPK pathway in the presence of drug, thereby blunting the effect of MEK inhibition. Cancers that have lost MAP3K1 or MAP2K4 fail to activate JNK-JUN. Consequently, loss-of-function mutations in either MAP3K1 or MAP2K4 confer sensitivity to MEK inhibition by disabling JNK-JUN-mediated feedback loop upon MEK inhibition. In a panel of 168 Patient Derived Xenograft (PDX) tumors, MAP3K1 and MAP2K4 mutation status is a strong predictor of response to MEK inhibition. Our findings suggest that cancers having mutations in MAP3K1 or MAP2K4, which are frequent in tumors of breast, prostate and colon, may respond to MEK inhibitors. Our findings...
International Journal of Molecular Sciences
Epithelial–mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the ...