A Proof Theory for the Logic of Provability in True Arithmetic (original) (raw)

[Attached is an accepted version.] In a classical 1976 paper, Solovay proved the arithmetical completeness of the modal logic GL; provability of a formula in GL coincides with provability of its arithmetical interpretations in Peano Arithmetic. In that paper, he also provided an axiomatic system GLS and proved arithmetical completeness for GLS; provability of a formula in GLS coincides with truth of its arithmetical interpretations in the standard model of arithmetic. Proof theory for GL has been studied intensively up to the present day. However, it might sound somewhat strange that no proof theory for GLS was ever developed nor even suggested thus far, except for the axiomatic system offered by Solovay. In this paper, we develop a proof theory for GLS based on the sequent calculus method. We provide a sequent calculus for GLS and prove the cut- elimination and some standard consequences of it: the interpolation and de- finability theorems. As another consequence of cut-elimination, we also prove the equivalence of GL and GLS with respect to a special form of formulas which we call G ̈odel sentences, using a purely proof-theoretical method.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.