Physicochemical Changes of Cellulose and their Influences on Populus trichocarpa Digestibility after Different Pretreatments (original) (raw)

Lignin content in natural Populus variants affects sugar release

Proceedings of the National Academy of Sciences, 2011

The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production. L ignocellulosic biomass is the only sustainable resource in terms of cost, availability, and scale that can be converted into liquid fuels to reduce the prevailing role of petroleum in providing energy for the world's transportation needs (1, 2) and to decrease the emissions of fossil CO 2 that damage the world's climate (3). The primary obstacle to producing liquid transportation fuels by bioconversion methods is the release of sugars in high quantities at low costs from recalcitrant lignocellulosic biomass feedstocks (4, 5). Genetic modification of plants to make them less recalcitrant is a promising path to address this challenge on the feedstock side, but the effort would be greatly aided by improving understanding of the fundamental relationship between cell-wall composition and sugar release through pretreatment and enzymatic hydrolysis.

Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass

Green Chem, 2017

Biorefining of plant feedstocks into fuels and specialty chemicals, using biological conversion, requires the solubilization of lignocellulosics into simpler oligomeric compounds. However, non-pretreated woody biomass has shown high resistance to hydrolysis by cellulolytic microbes or purified cellulases. We investigate the limited solubilization of Populus deltoides by the cellulolytic thermophile Clostridium thermocellum in the absence of solute inhibitors. Compared to control samples, fermented poplar revealed that the hydrolysis of carbohydrates in secondary cell walls ceased prematurely as the presence of lignin increased at the surface. In quantitative fluorescence colocalization analysis by confocal laser scanning microscopy, the Manders' coefficient of the fractional overlap between lignin and cellulose signals increased from an average of 0.67 to a near-maximum of 0.92 in fermented tissue. Chemical imaging by time-of-flight secondary ion mass spectrometry revealed a 49% decline in surface cellulose and a compensatory 30% and 11% increase in surface Sand G-lignin, respectively. Although 72% of the initial glucan was still present in the lignocellulose matrix of this feedstock, subsequent treatments with cell-free purified cellulases did not significantly restore hydrolysis. This confirmed that biomass surfaces had become non-productive for the C. thermocellum hydrolytic exoproteome. This study provides direct evidence for an explicit definition of feedstock recalcitrance, whereby depletion of surface carbohydrate increases lignin exposure which leads to inhibition of enzyme activity, while the bulk residual biomass retains significant undigested carbohydrate content. The analysis presented here establishes a novel method for the quantitation of lignocellulose recalcitrance.

Lignin Exhibits Recalcitrance‐Associated Features Following the Consolidated Bioprocessing of Populus trichocarpa Natural Variants

ChemistrySelect, 2017

Because cellulosic ethanol production remains cost-prohibitive" advances in consolidated bioprocessing (CBP) have been directed towards lifting this restriction. CBP reduces the need for added enzymes and can potentially slash ethanol production costs through process integration. Clostridium thermocellum, a CBP microorganism, organizes its enzymes in a multienzyme complex-a stark contrast to fungal enzymes. Nonetheless, recalcitrance may limit the extent of biomass deconstruction. Herein, six Populus were treated with C. thermocellum (ATCC 27405) and characterized to determine structural changes that resulted from CBP. The 2D HSQC NMR spectra of lignin-enriched residues revealed that higher S/G ratio (2.6) and fewer carbon-carbon interunit linkages (generally 2-5%) were present in the top performing poplar. Furthermore, cellulose degree of polymerization data suggests that C. thermocellum likely circumvents long chain cellulose, while cellulose crystallinity and hemicellulose molecular weight data do not provide a direct indication of features connected to recalcitrance. Hence, C. thermocellum is similarly impacted by the proposed lignin properties that negatively impact biomass deconstruction using fungal enzymes.

Effects of Biomass Accessibility and Klason Lignin Contents during Consolidated Bioprocessing in Populus trichocarpa

ACS Sustainable Chemistry & Engineering, 2017

The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons' stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons' staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low density P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (∼25%), while GW-9914 had a low lignin content (∼20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.

Variation of S/G Ratio and Lignin Content in a Populus Family Influences the Release of Xylose by Dilute Acid Hydrolysis

Applied Biochemistry and Biotechnology, 2006

Wood samples from a second generation Populus cross were shown to have different lignin contents and S/G ratios (S: syringyl-like lignin structures; G: guaiacyl-like lignin structures). The lignin contents varied from 22.7% to 25.8% and the S/G ratio from 1.8 to 2.3. Selected samples spanning these ranges were hydrolyzed with dilute (1%) sulfuric acid to release fermentable sugars. The conditions were chosen for partial hydrolysis of the hemicellulosic fraction to maximize the expression of variation among samples. The results indicated that both lignin contents and S/G ratio significantly affected the yield of xylose. For example, the xylose yield of the 25.8% lignin and 2.3 S/G (high lignin, high S/G) sample produced 30% of the theoretical yield, whereas the xylose yield of the 22.7% lignin and 1.8 S/G (low lignin, low S/G) was 55% of the theoretical value. These results indicate that lignin content and composition among genetic variants within a single species can influence the hydrolyzability of the biomass.

Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

Biotechnology for biofuels, 2014

Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have large implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated...

Pretreatments vs. cellulose

Bioresources, 2019

Pretreatment is commonly used to reduce recalcitrance of the lignin-carbohydrate matrix. In this study, leading pretreatment technologies, including dilute sulfuric acid, liquid hot water, alkaline, and organosolv pretreatments, were applied to the selected Populus trichocarpa genotype with relatively low lignin content to elucidate cellulose physicochemical property changes and digestibility-related factors. Pretreated Populus trichocarpa (BESC 131) exhibited higher accessibility and glucose yield than the untreated biomass. Chemical composition and Fourier transform infrared (FTIR) analysis results revealed that hemicellulose and lignin were removed to a varying extent depending on the pretreatment techniques applied. The degree of polymerization of the cellulose was decreased to the largest extent after dilute acid pretreatment, followed by organosolv, alkaline, and liquid hot water pretreatments. Cellulose crystallinity index was slightly changed after the pretreatments; however, its differences were not remarkable between those pretreatment techniques. Among four different pretreatments, organosolv was the most effective pretreatment technology in terms of sugar release, which was three times higher than that of the untreated native biomass. Among all of the tested cell wall traits, the lignin content of Populus trichocarpa was the most remarkable feature associated with glucose release, though Populus trichocarpa recalcitrance was not solely dependent on any single factor.

Structural changes of lignins in natural Populus variants during different pretreatments

Bioresource Technology, 2019

In the present study, three leading pretreatment technologies including dilute acid (DA), liquid hot water (LHW), and organosolv pretreatments (OS) were applied on two Populus natural variants with different recalcitrance. The structural features of the isolated lignins were analyzed accordingly. All the studied pretreatments reduced the molecular weights of the lignins. Aliphatic OH was reduced while phenolic OH was increased in all pre-treated lignins. HSQC analysis revealed that pretreatment influenced the lignin composition and relative distribution of inter-unit linkages. The lignin S/G ratio was found to increase during DA pretreatment, while it was decreased after LHW and OS pretreatment. LHW pretreatment also resulted in much less cleavage of β-O-4 linkage than the other two pretreatments. These results could offer guidelines on appropriate selection of bio-mass and pretreatment technology in the future biorefinery process.

Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoate (PB) and β−5 linkage contents, while it had positive ones with β-O-4 linkage, lignin molecular weight, and ethanol production. This study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.