Changes in Outer Membrane Proteins of Benzalkonium Chloride Adapted Pseudomonas Aeruginosa and Mutations in GyrA and ParC Genes (original) (raw)

2019, Medical Journal of Cairo University

Abstract

Background: Benzalkonium Chloride (BC) is widely used in hospitals, industry and cosmetics. Adaptation of Pseu-domonas aeruginosa to BC was increased. This adaptation may lead to the emergence of cross-resistance to other disinfectants and antibiotics. Little attention has been focused on the resistant mechanisms.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (58)

  1. -TABATA A., NAGAMUNE H., MAEDA T., MURAKA- MI K., MIYAKE Y. and KOURAI H.: Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob Agents Chemother [Internet].
  2. -ANTONIO G., GADEA R. and ANGEL M.: Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods ndez Fuentes, Rub e n P e. 63, 2017.
  3. -BUFFET-BATAILLON S., TATTEVIN P., MAILLARD J.Y., BONNAURE-MALLET M. and JOLIVET-GOU- GEON A.: Efflux pump induction by Quaternary Ammo- nium Compounds (QAC) and fluoroquinolone-resistance in bacteria, 1-23. Available from: http:// orca.cf.ac.uk/ 84361/3/Efflux pump induction by Quaternary Ammonium Compounds %28QAC%29 and fluoroquinolone-resistance in bacteria.pdf, 2016.
  4. -PRAKASH D. and SAXENA R.S.: Prevalence and anti- microbial susceptibility pattern Of Pseudomonas aerugi- nosa isolated from urine Samples of hospitalized patients in India. J. Appl. Pharm. Sci., 3 (1): 132-44, 2013.
  5. -ABD EL-TAWAB A.A., EL-HOFY F.I., KHATER D.F. and AL-ADL M.M.: Virulence, Resistance Genes Detec- tion and Sequencing of gyrA Gene of Pseudomonas aer- uginosa Isolated from Chickens and Human in Egypt. Nat. Sci., 16 (2): 32-9, 2018.
  6. -ALOUSH V., NAVON-VENEZIA S., SEIGMAN-IGRA Y., CABILI S. and CARMELI Y.: Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrob Agents Chemother [Internet]. Jan. [cited 2018 Oct. 20], 50 (1): 43-8. Available from: http://www. nbi.nlm. nih.gov/pubmed/16377665, 2006.
  7. -GAD G.F., EL-DOMANY R.A., ZAKI S. and ASHOUR H.M.: Characterization of Pseudomonas aeruginosa iso- lated from clinical and environmental samples in Minia, Egypt: Prevalence, antibiogram and resistance mecha- nisms. J. Antimicrob. Chemother [Internet]. Sep. 17 [cited 2018 Oct. 20], 60 (5): 1010-7. Available from: http://www. ncbi.nlm.nih.gov/pubmed/17906321, 2007.
  8. -GORGANIA N., AHLBRANDC S., PATTERSONC A. and POURMANDA N.: Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa, 34 (5): 414-8, 2010.
  9. -JALAL S., CIOFU O., HOIBY N., GOTOH N. and WRETLIND B.: Molecular mechanisms of fluoroquinolo- ne resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother [Internet]. Mar. 1 [cited 2018 Oct. 20], 44 (3): 710-2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 10681343, 2000.
  10. -YOSHIDA H., BOGAKI M., NAKAMURA M., YA- MANAKA L.M. and NAKAMURA S.: Quinolone resist- ance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob Agents Chemother [Inter- net].
  11. Aug. [cited 2018 Oct. 20], 35 (8): 1647-50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1656869, 1991.
  12. -YOSHIDA H., BOGAKI M., NAKAMURA M. and NA- KAMURA S.: Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Anti- microb Agents Chemother [Internet]. Jun. [cited 2018 Oct. 20], 34 (6): 1271-2. Available from: http://www. ncbi.nlm.nih.gov/pubmed/2168148, 1990.
  13. -HOOPER D.C.: New Uses for New and Old Quinolones and the Challenge of Resistance. Clin. Infect. Dis. [Inter- net]. Feb. 1 [cited 2018 Oct. 20], 30 (2): 243-54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10671323, 2000.
  14. -PIDDOCK L.J.: Mechanisms of fluoroquinolone resistance: An update 1994-1998. Drugs [Internet]. [Cited 2018 Oct. 20], 58 Suppl 2: 11-8. Available from: http://www. nc- bi.nlm.nih.gov/pubmed/10553699, 1999.
  15. -DRLICA K., HIASA H., KERNS R., MALIK M., MUS- TAEV A. and ZHAO X.: Quinolones: Action and resist- ance updated. Curr. Top. Med. Chem. [Internet]. [Cited 2018 Oct. 20], 9 (11): 981-98. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/19747119, 2009.
  16. -DRLICA K.: Mechanism of fluoroquinolone action. Curr. Opin. Microbiol. [Internet]. Oct. [cited 2018 Oct. 20]; 2 (5): 504-8. Available from: http://www.ncbi.nlm. nih.gov/ pubmed/10508721, 1999.
  17. -FERNÁNDEZ L., BREIDENSTEIN E.B.M. and HANCOCK R.E.W.: Creeping baselines and adaptive resistance to anti- biotics. Drug Resist Updat [Internet]. Feb. 1 [cited 2018 Oct. 20], 14 (1): 1-21. Available from: https://www. scien- cedirect.com/science/article/pii/S1368764611000021, 2011.
  18. -RABILLOUD T.: Membrane proteins and proteomics: Love is possible, but so difficult. Electrophoresis [Internet].
  19. Jun. 1 [cited 2018 Oct. 20], 30 (S 1): S174-80. Available from: http://doi.wiley.com/10.1002/elps.200900050, 2009.
  20. -SANTONI V., MOLLOY M. and RABILLOUD T.: Mem- brane proteins and proteomics: Un amour impossible? Electrophoresis [Internet]. Apr. 1 [cited 2018 Oct. 20], 21 (6): 1054-70. Available from: http://doi.wiley.com/ 10.1002/%28 SICI%291522-2683 %2820000401 %- 2921 %3A6%3C 1054%3A%3AAID-ELPS 1054%- 3E3.0.CO%3B2-8, 2000.
  21. -MACHADO I., COQUET L., JOUENNE T. and PEREIRA M.O.: Proteomic approach to pseudomonas aeruginosa adaptive resistance to benzalkonium chloride. J. Proteom- ics [Internet]. 89: 273-9. Available from: http://dx.doi.org/ 10.1016/j.jprot.2013.04.030, 2013.
  22. -OSMAN M.E.S., EL-HENDAWY H.H., ABDEL-ALL S.M., HASSAN A.M. and MAHMOUD D.E.: Correlation between Resistance of Pseudomonas aeruginosa to Ben- zalkonium Chloride and Expression of efflux pump genes. J. Appl. Pharm. Sci., 2018.
  23. -SALMA R., DABBOUSSI F., KASSAA I., KHUDARY R. and HAMZE M.: GyrA and parC mutations in quinolo- ne-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. J. Infect. Chemother. [Internet]. 19 (1): 77-81. Available from: http://dx.doi.org/ 10.1007/s10156-012-0455-y, 2013.
  24. -HISHAM A.A., AMIRA M.E.G. and HEND A.K.: Pheno- typic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. (March): 10-21, 2018.
  25. -WIEGAND I., HILPERT K. and HANCOCK R.E.W.: Agar and broth dilution methods to determine the Minimal Inhibitory Concentration (MIC) of antimicrobial substanc- es. Nat. Protoc. [Internet]. Feb. 1 [cited 2018 Mar. 17], 3 (2): 163-75. Available from: http://www.nature.com/ articles/nprot.2007.521, 2008.
  26. -CLSI: Clinical and Laboratory Standards institute. Per- formance Standards for Antimicrobial Susceptibility Testing; 25th ed Informational Supplement; Wayne, Penn- sylvania. CLSI document m100-s25, 2015.
  27. -SATISH, ROBERT C.M.J. and M.E.G.: Antimicrobial combinations. In: Lorian. V.: Antibiotics in laboratory medicine. 5t h ed. pp. 366-425, p. pages. new York: Williams & Wilkins. [Internet].
  28. -YEHIA H.M., HAS SANEIN W.A. and IBRAHEIM S.M.: Studies on molecular characterizations of the outer mem- brane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa. Bi- omed. Res. Int., 2015 (February), 2015.
  29. -LAEMMLI U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259): 680-5, 1970.
  30. -TOHIDPOUR A., PEERAYEH S.N. and NAJAFI S.: Detection of DNA Gyrase Mutation and Multidrug Efflux Pumps Hyperactivity in Ciprofloxacin Resistant Clinical Isolates of Pseud-omonas aeruginosa, 1 (1): 1-7, 2013.
  31. -SAVOV E., TRIFONOVA A., TODOROVA I., GERGO- VA I., BORISOVA M., ANANIEVA M., et al.: Assesment Of The Resistance Of Clinical Isolates Pseudomonas Aeruginosa To Quinolonones, 12 (3): 221-6, 2014.
  32. -NOURI R., AHANGARZADEH M. and HASANI A.: The role of gyrA and parC mutations in fluoroquinolones- resistant Pseudomonas aeruginosa isolates from Iran. Brazilian J. Microbiol. [Internet]. 47 (4): 925-30. Available from: http://dx.doi.org/10.1016/j.bjm.2016.07.016, 2016.
  33. -NEJMA M. BEN, SIOUD O. and MASTOURI M.: Qui- nolone-resistant clinical strains of Pseudomonas aeruginosa isolated from University Hospital in Tunisia. 3 Biotech, 1-7, 2018.
  34. -GORGANI N., AHLBRAND S., PATTERSON A. and POURMAND N.: Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents [Internet]. Nov. [cited 2018 Oct. 20], 34 (5): 414-8. Available from: http://www.ncbi. nlm.nih.gov/pubmed/19656662, 2009.
  35. -HANCOCK R.E.W. and BRINKMAN F.S.L.: Function of Pseudomonas Porins in Uptake and Efflux. Annu. Rev. Microbiol. [Internet]. Oct. [cited 2017 Dec. 31], 56 (1): 17-38. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/12142471, 2002.
  36. -HAMZEHPOUR M.M., PECHERE J.C., PLESIAT P. and KOHLER T.: OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa. Anti- microb Agents Chemother., 39 (11): 2392-6, 1995.
  37. -TATTAWASART U., MAILLARD J.Y., FURR J.R. and RUSSELL A.D.: Outer membrane changes in Pseu- domonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int. J. Antimicrob. Agents, 16 (3): 233-8, 2006.
  38. -McPHEE J.B., TAMBER S., BAINS M., MAIER E., GELLATLY S., LO A., et al.: The major outer membrane protein OprG of Pseudomonas aeruginosa contributes to cytotoxicity and forms an anaerobically regulated, cation- selective channel. FEMS Microbiol Lett., 296 (2): 241- 7, 2009.
  39. -CHEVALIER S., BOUFFARTIGUES E., BODILIS J., MAILLOT O., LESOUHAITIER O., FEUILLOLEY
  40. M.G.J., et al.: Structure, function and regulation of Pseu- domonas aeruginosa porins. FEMS Microbiol Rev., 41 (5): 698-722, 2017.
  41. -HANCOCK R.E.: Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bac- teria. Clin. Infect. Dis. [Internet], 27: 93-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9710677, 1998.
  42. -HANCOCK R. and WOROBEC E.: Pseudomonas: Outer membrane proteins. In: Biotechnology Handbooks, p. 139-67, 1998.
  43. -YONEYAMA H. and NAKAE T.: Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology, 142 (8): 2137-44, 1996.
  44. -BELLIDO F., MARTIN N.L., SIEHNEL R.J. and HAN- COCK R.E.W.: Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability. J. Bacteriol., 174 (16): 5196-203, 1992.
  45. -RAWLING E.G., BRINKMAN F.S.L. and HANCOCK R.E.W.: Roles of the carboxy-terminal half of Pseu- domonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J. Bacteriol., 180 (14): 3556- 62, 1998.
  46. -WOODRUFF W.A. and HANCOCK R.E.W.: Pseudomonas aeruginosa outer membrane protein F: Structural role and relationship to the Escherichia coli omP protein. J. Bac- teriol., 171 (6): 3304-9, 1989.
  47. -PUMBWE L., EVERETT M.J., HANCOCK R.E.W. and PIDDOCK L.J.V.: Role of gyrA mutation and loss of OprF in the multiple antibiotic resistance phenotype of Pseudomonas aeruginosa G49. FEMS Microbiol Lett., 143 (1): 25-8, 1996.
  48. -BRATU S., LANDMAN D., GUPTA J. and QUALE J.: Role of AmpD, OprF and penicillin-binding proteins in (3 -lactam resistance in clinical isolates of Pseudomonas aeruginosa. J. Med. Microbiol., 56 (6): 809-14, 2007.
  49. -YATES J.M., MORRIS G. and BROWN M.R.W.: Effect of iron concentration and growth rate on the expression of protein G in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 58 (2-3): 259-62, 1989.
  50. -CHAMBERLAND S., BAYER A.S., SCHOLLAARDT T., WONG S.A. and BRYAN L.E.: Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis. Antimicrob Agents Chemother., 33 (5): 624-34, 1989.
  51. -PENG X., XU C., REN H., LIN X., WU L. and WANG S.: Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Pseudomonas aeruginosa responding to ampicillin, kanamycin, and tetracycline resistance. J. Proteome. Res., 4: 2257-65, 2005.
  52. -MACFARLANE E.L.A., KWASNICKA A., OCHS M.M. and HANCOCK R.E.: PhoP-PhoQ homologues in Pseu- domonas aeruginosa regulate expression of the outer- membrane protein OprH and polymyxin B resistance. Mol. Microbiol., 34 (2): 305-16, 1999.
  53. -De VOS D., BOUTON C., SARNIGUET A., De VOS P., VAUTERIN M. and CORNELIS P.: Sequence diversity of the oprI gene, coding for major outer membrane lipo- protein I, among rRNA group I pseudomonads. J. Bacte- riol., 180 (24): 6551-6, 1998.
  54. -RAU H., REVETS H., CORNELIS P., TITZMANN A., RUGGLI N., McCULLOUGH K.C., et al.: Efficacy and functionality of lipoprotein OprI from Pseudomonas aeruginosa as adjuvant for a subunit vaccine against classical swine fever. Vaccine, 24 (22): 4757-68, 2006.
  55. -QIN X., EMERSON J., STAPP J., STAPP L., ABE P. and BURNS J.L.: Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfer- menting gram-negative bacilli from patients with cystic fibrosis. J. Clin. Microbiol., 41 (9): 4312-7, 2003.
  56. -GUYARD-NICODÈME M., BAZIRE A., HÉMERY G., MEYLHEUC T., MOLLÉ D., ORANGE N., et al.: Outer membrane modifications of Pseudomonas fluorescens MF37 in response to hyperosmolarity. J. Proteome. Res., 7 (3): 1218-25, 2008.
  57. -LINARES J., GUSTAFSSON I. and BAQUERO F.: J.M. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. U.S.A., 103: 19484-9, 2006.
  58. -MIZUNO T. and KAGEYAMA M.: Separation and Char- acterization aeruginosa of the Outer Membrane of Pseu- domonas aeruginosa. J. Biochem., 84 (1): 179-91, 1978.