After Husserl: Phenomenological Foundations of Mathematics (original) (raw)
Related papers
Mathematical Knowledge and the Origin of Phenomenology: The Question of Symbols in Early Husserl
Studia Phaenomelogica, 2021
The paper is divided into two parts. In the first one, I set forth a hypothesis to explain the failure of Husserl's project presented in the Philosophie der Arithmetik based on the principle that the entire mathematical science is grounded in the concept of cardinal number. It is argued that Husserl's analysis of the nature of the symbols used in the decadal system forces the rejection of this principle. In the second part, I take into account Husserl's explanation of why, albeit independent of natural numbers, the system is nonetheless correct. It is shown that its justification involves, on the one hand, a new conception of symbols and symbolic thinking, and on the other, the recognition of the question of "the formal" and formalization as pivotal to understand "the mathematical" overall.
Marmara Üniversitesi İlahiyat Fakültesi Dergisi, 2023
In his later works, the great logician and mathematician Kurt Gödel concentrates his focus on the philosophical problems such as the implications of set theory, the grammar and philosophy of language, objectivity and relativity, the ontological proof of God’s existence, and phenomenology as an exact method. This essay explores how Gödel reads the philosophy (of logic and mathematics) of his time and why he turns his attention to Husserl’s phenomenology for describing the foundations of mathematics. To begin with, Gödel employs Husserl’s significant distinction between Weltanschauung (worldview) philosophy and philosophy as rigorous science: According to the Weltanschauung philosophy, the spirit of time constantly changes so that the ideas discussed and goals attempted are meant to be temporal, and not for the sake of eternal truths, but for that of their own perfection; philosophy as rigorous science, on the other hand, is supratemporal so that its aim is to discover absolute and timeless values. As for the worldview of his time, Gödel sees the development of philosophy and mathematics leaned toward skepticism, pessimism, and positivism. The antinomies of set theory, for instance shaked the grounds on which mathematics and logic are founded. Gödel, too, uses these paradoxes in his incompleteness theorems in order to prove that there are some statements which can neither be proved nor disproved within a system. That also means that arithmetic is not eligible to prove its own consistency. From this, however, Gödel does not come to a conclusion for a nihilism in mathematics and logic: These mere antinomies of set theory do not “necessarily” lead us to logical positivism, and neither to such a materialism, nor to any kind of pessimistic theory of knowledge. The incompleteness theorems assert that there are arithmetical propositions that are true but neither provable nor unprovable within its own calculus, so that arithmetic is intrinsically incomplete. However, instead of Alfred Tarski’s pathological view of examining the detections within the faulty system and then reforming the system all together, Gödel holds that we need to change our methods to find new patterns that describe the antinomies pointing to the unrecoverable reality of the mathematical world. Thus, Gödel does not follow any variation of the Weltanschauung philosophy of his time, either attempting to reduce mathematical realities to mathematical proofs in order to get rid of antinomies, or endeavoring to rescue a complete system of truths by a closed formal system, both Weltanschauung philosophies fail to set forth a realistic method. In this context, Gödel finds the task of phenomenology analogous to what he pursues in terms of a systematic framework for the foundations of mathematics. Husserl’s phenomenology, in Gödel’s account, proliferates the intuition of (mathematical) essences and provides a clarification of meaning of undefinable concepts, such as the antinomies of set theory. Applying the phenomenological reduction to the objective reality of the mathematical world, Gödel believes one obtains a clear experiential reality of the essential characteristics of (mathematical and logical) concepts. Briefly put, what Gödel finds in Husserl’s phenomenology that corresponds to his way of mathematical realism is a thoroughly designated method giving us mathematical essences back again.
Marmara Üniversitesi İlâhiyat Fakültesi Dergisi, 2023
Gödel finds the task of phenomenology analogous to what he pursues in terms of a systematic framework for the foundations of mathematics. Husserl’s phenomenology, in Gödel’s account, proliferates the intuition of (mathematical) essences and provides a clarification of meaning of undefinable concepts, such as the antinomies of set theory. Applying the phenomenological reduction to the objective reality of the mathematical world, Gödel believes one obtains a clear experiential reality of the essential characteristics of (mathematical and logical) concepts. Briefly put, what Gödel finds in Husserl’s phenomenology that corresponds to his way of mathematical realism is a thoroughly designated method giving us mathematical essences back again.
Husserl Studies, 2022
Since the end of the last century, there have been several ambitious attempts to naturalize Husserlian phenomenology by way of mathematization. To justify themselves in view of Husserl’s adamant antinaturalism, many of these attempts appeal to the new physico-mathematical tools that were unknown in Husserl’s time and thus allegedly make his position outdated. This paper critically addresses these mathematization proposals and aims to show that Husserl had, in fact, sufficiently good arguments that make his antinaturalistic position sound even today. The starting point of the discussion presented in this paper is the mathematization project introduced by Jean-Michel Roy, Jean Petitot, Bernard Pachoud, and Francisco Varela in their introduction to the book Naturalizing Phenomenology (Stanford University Press, 1999). This proposal was followed by a number of critiques but also by several alternative naturalization attempts clearly inspired by Roy et al.’s ambitious project. The review of some of Husserl’s important arguments often overlooked or misinterpreted by both the naturalization advocates and their critics leads the author of the paper to the twofold conclusion which, on the one hand, explores the deeper reasons for the impossibility of a physical and mathematical treatment of phenomenology, on the other hand, clarifies the sense in which such treatments are possible, namely by way of restriction of the variety of experiential aspects that undergo naturalization and substitution of the aspects amenable to the direct mathematization for the directly unmathematizable ones. In the fourth section of this paper, the author attempts to demonstrate that, contrary to widespread belief, Husserl’s arguments are not obsolete by the standards of the contemporary physico-mathematical approaches employed in the mathematization of phenomenology and indeed stand the test of time.