Temporal evolution of primary production in the central Barents Sea (original) (raw)

Abstract

. Within the frame of the Study of the European Arctic Shelf SEAS programme, the central Barents Sea region was surveyed two times, in late June and late July, during the cruise ARK VIII-2, in order to describe the physical, chemical and biological evolution of the system and to provide estimates of primary production. Primary production daily rates are provided for a North-South section crossing the Polar Front, using a geochemical approach. Rates of primary production derived from the uptake of nitrate are regarded as new production, whereas rates based on production of oxygen are Ž . considered as net community production NCP . They are compared, and estimates from oxygen are considered expression of the minimal rates of photosynthesis. Ž y2 y1 . NCP exhibited a decreasing trend from North to South: with moderate values -1.0 g C m day at the northern Ž y2 y1 . Ž y2 y1 . end, lower -0.4 g C m day at the central stations and dropping to the minimum 0.1 g C m day at the southernmost stations. New production showed a similar southward decreasing trend, ranging from 0.4 to 0.2 g C m y2 day y1 in the northern end and dropping to 0.0 g C m y2 day y1 at the central and southern stations. Since both estimates exhibited the highest values in the North, the ecosystem there is regarded as still working under eutrophic conditions, considerably based on new production exerted mainly by diatoms and prymnesophityes. In the southern end, dropping to zero of new production and the lowest values of NCP both suggest that ecosystem has already reached oligotrophic conditions, mainly based on regenerated production, which corresponded to communities dominated by flagellates. All measured and calculated parameters indicate the shift from eutrophic to oligotrophic conditions as not strictly temporal but Ž . also spatial latitudinal . q

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (84)

  1. Andreassen, I., Nothig, E.M., Wassmann, P., 1996. Vertical parti- cle flux on the shelf off northern Spitsbergen, Norway. Mar. Ecol.: Prog. Ser. 137, 215-228.
  2. Banse, K., 1994. Uptake of inorganic carbon and nitrate by marine phytoplankton and the Redfield ratio. Global Biogeochem. Ž . Cycles 8 1 , 81-84.
  3. Benson, B.B., Krause, D., 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater Ž . in equilibrium with atmosphere. Limnol. Oceanogr. 29 3 , 620-632.
  4. Bronk, D.A., Glibert, P.M., 1994. The fate of missing 15 N differs Ž . among marine systems. Limnol. Oceanogr. 39 1 , 189-195.
  5. Bronk, D.A., Glibert, P.M., Ward, B.B., 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production. Sci- Ž . Ž .
  6. ence Washington, D. C. 265 5180 , 1843-1852.
  7. Bury, S.J., Owens, N.J.P., Preston, T., 1995. 13 C and 15 N uptake by phytoplankton in the marginal ice zone of the Bellings- hausen Sea. Deep-Sea Res. 42, 1253-1276.
  8. Catalano, G., Povero, P., Fabiano, M., Benedetti, F., Goffart, A., 1997. Nutrient utilization and particulate organic matter Ž changes during summer in the upper mixed layer Ross Sea, .
  9. Antarctica . Deep-Sea Res. 44, 97-112.
  10. Codispoti, L.A., Friederich, G.E., Hood, D.W., 1986. Variability in the inorganic carbon system over the southeastern Bering Sea shelf during spring 1980 and spring-summer 1981. Conti- nental Shelf Res. 5, 133-160.
  11. Codispoti, L.A., Friederich, G.E., Sakamoto, C.M., Gordon, L.I., 1991. Nutrient cycling and primary production in the marine systems of the Arctic and Antarctic. J. Mar. Syst. 2, 359-384.
  12. Dugdale, R.C., Goering, J.J., 1967. Uptake of new and regener- ated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196-206.
  13. Dugdale, R.C., Wilkerson, F.P., Morel, A., 1990. Realization of new production in coastal upwelling areas: a means to com- Ž . pare relative performance. Limnol. Oceanogr. 35 4 , 822-829.
  14. Edler, L., 1979. Recommendations on methods for marine biologi- cal studies in the Baltic Sea. Phytoplankton and chlorophyll. BMB Publ. 5, 1-38.
  15. Eppley, R.W., Peterson, B.J., 1979. Particulate organic fluxes and planktonic new production in the deep ocean. Nature 282, 677-680.
  16. Glibert, P.M., Biggs, D.C., McCarthy, J.J., 1982. Utilization of ammonium and nitrate during austral summer in the Scotia Ž . Sea. Deep-Sea Res. 29 7A , 837-850.
  17. Goeyens, L., Soerensson, F., Treguer, P., Morvan, J., Panonse, M., Dehairs, F., 1991. Spatiotemporal variability of inorganic nitrogen stoks and uptake fluxes in the Scotia-Weddell con- fluence area during November and December 1988. Mar. Ecol. Prog. Ser. 77, 7-19.
  18. Goeyens, L., Treguer, P., Baumann, M.E.M., Baeyens, W., De- hairs,
  19. F., 1995. The leading role of ammonium in the nitrogen uptake regime of the Southern ocean marginal ice zone. J. Mar. Syst. 6, 345-361.
  20. Grasshoff, K., Ehrardt, M., Kremling, K., 1983. Methods of Seawater Analysis. 2nd revised and extended edition Verlag Chemie, Weinheim, 419 pp.
  21. Inall, M., Parker, P., 1992. Sea ice. In: Rachor, E. Ed. , Scientific Cruise Report of the 1991 Arctic Expedition ARK VIIIr2 of Ž RrV Polarstern EPOS II: Study of the European Arctic .
  22. Shelf, ASEASB, of the European Science Foundation . Ber. Polarforschung, vol. 115, pp. 43-51.
  23. Jenkins, W.J., 1982. Oxygen utilization rates in the North Atlantic Subtropical Gyre and primary production in oligotrophic sys- tem. Nature 300, 246.
  24. A. Luchetta et al.r Journal of Marine Systems 27 2000 177-193 192
  25. Jennings, W.J., Wallace, D.W.R., 1992. Tracer based inferences of new primary production in the sea. In: Falkowski, P.G., Ž .
  26. Woodhead, A.D. Eds. , Primary Productivity and Biogeo- chemical Cycles in the Sea. Environ. Sci. Res. Plenum, New York, NY, pp. 299-311.
  27. Jennings, J.C., Gordon, L.I., Nelson, D.M., 1984. Nutrient deple- tion indicates high primary productivity in the Weddel Sea. Nature 309, 51-54.
  28. Kattner, G., Becker, H., 1991. Nutrients and organic nitrogenous compounds in the marginal ice zone of Fram Strait. J. Mar. Syst. 2, 385-394.
  29. Kristiansen, S., Farbrot, T., 1994. Nitrogen cycling in the Barents Sea -seasonal dynamics of new and regenerated production Ž . in the marginal ice zones. Limnol. Oceanogr. 39 7 , 1630- 1642.
  30. Kristiansen, S., Lund, B.A.A., 1989. Nitrogen cycling in the Barents Sea: I. Uptake of nitrogen in the water column. Deep-Sea Res. 2, 255-268.
  31. Laws, E.A., 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Res. Ž . 38 1A , 143-167.
  32. Loeng, H., 1989. Ecological features of the Barents Sea. In: Rey, Ž .
  33. L., Alexander, V. Eds. , Proceedings of the 6th Conference of the Comite Arctique International, 13-15 May 1985. E.J. Brill, Leiden, pp. 327-365.
  34. Loeng, H., 1991. Features of the physical oceanographic condi- tions of the Barents Sea. In: Sakshaug, E., Hopkins, C.C.E., Ž .
  35. Oritsland, N.A. Eds. , Proceedings of the Pro Mare Sympo- sium on Polar Marine Ecology, Trondheim, 12-16 May 1990. Ž . Polar Res. 10 1 , 5-18.
  36. Longhurst, A., Sathyendranath, S., Platt, T., Caverhill, C., 1995. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245-1271.
  37. Luchetta, A., Civitarese, G., Matishov, D., 1992. Hydrochemistry. Ž . In: Rachor, E. Ed. , Scientific Cruise Report of the 1991 Arctic Expedition ARK VIIIr2 of RV A PolarsternB. Ber. Polarforschung, vol. 115, pp. 32-42.
  38. Minas, H.J., Codispoti, L.A., 1993. Estimation of primary produc- tion by observation of changes in the mesoscale nitrate field. ICES Mar. Sci. Symp. 197, 215-235.
  39. Minas, H.J., Minas, M., Packard, T.T., 1986. Productivity in upwelling areas deduced from hydrographic and chemical Ž . fields. Limnol. Oceanogr. 31 6 , 1182-1206.
  40. Mitchell, B.G., Holm-Hansen, O., 1991. Observation and mod- elling of the Antarctic phytoplankton crop in relation to mix- ing depth. Deep-Sea Res. 38, 981-1007.
  41. Nelson, D.M., Smith, W.O., 1991a. Svedrup revisited: critical depths, maximum chlorophyll levels, and the control of South- ern Ocean productivity by the irradiance-mixing regime. Lim- Ž . nol. Oceanogr. 36 8 , 1650-1661.
  42. Nelson, D.M., Smith, W.O., 1991b. Svedrup revisited: Critical depths, maximum chlorophyll levels, and the control of the Southern ocean productivity by the irradiance-mixing regime. Ž . Limnol. Oceanogr. 25 6 , 1064-1661.
  43. Olsson, K., Andersson, L.G., Frank, M., Luchetta, A., Smethie, W., 1999. Carbon utilization in the Eurasian sector of the Ž . Arctic Ocean. Limnol. Oceanogr. 44 1 , 5-105.
  44. Owrid, G., Noethig, E.M., Socal, G., Luchetta, A., Wiktor, J., Andreassen, I., Civitarese, G., Schauer, U., Soerensson, F., Strass, V., 1999. Spatial variability of phytoplankton and new production in the waters around Svalbard in relation to hydro- logical and nutrient conditions. Polar Res., Submitted for publication.
  45. Pfirman, S.L., Bauch, D., Gammelsrod, T., 1994. The Northern Barents Sea: water mass distribution and modification. In: Ž .
  46. Johannessen, O.M., Muench, R.D., Overland, J.E. Eds. , The Polar Oceans and their role in shaping the global environment. American Geophysical Union, Washington, DC, pp. 77-94.
  47. Platt, T., Subba Rao, D.V., 1975. Primary production of marine Ž . microphytes. In: Cooper, J.P. Ed. , Photosynthesis and Pro- ductivity in Different Environments. Cambridge Univ. Press, Cambridge, pp. 249-280.
  48. Platt, T., Jauhary, P., Sathyerandranath, S., 1992. The importance and measurement of new production. In: Falkowski, P.G., Ž .
  49. Woodhead, A.D. Eds. , Primary Productivity and Biogeo- chemical Cycles in the Sea. Environ. Sci. Res. Plenum, New York, pp. 273-284.
  50. Pomeroy, L.R., 1997. Primary production in the Arctic Ocean estimated from dissolved oxygen. J. Mar. Syst. 10, 1-8.
  51. Priddle, J., Leakey, R., Symon, C., Whitehouse, M., Robins, D., Cripps, G., Murphy, E., Owens, N., 1995. Nutrient cycling by Antarctic marine microbial plankton. Mar. Ecol. Prog. Ser. Ž . 116 1-3 , 181-198.
  52. Redfield, A.C., Ketchum, B.H., Richards, F.A., 1963. The influ- ence of organisms on the composition of sea-water. In: Hill, Ž .
  53. M.N. Ed. , The Sea, vol. 2, Wiley, New York, pp. 26-77.
  54. Rey, F., Loeng, H., 1985. The influence of ice and hydrographic conditions on the development of phytoplankton in the Barents Ž .
  55. Sea. In: Grey, Christiansen Eds. , Mar. Biol. Polar Reg. Eff. Stress Mar. Org.. Wiley, New York, pp. 49-63.
  56. Sambrotto, R.N., Goering, J.J., McRoy, C.P., 1984. Large yearly production of phytoplankton in the western Bering strait. Science 225, 1147-1150.
  57. Sambrotto, R.S., Savidge, G., Robinson, C., Boyd, P., Takahashi, T., Karl, D.M., Langdon, C., Chipman, D., Marra, J., Codis- poti, L., 1993. Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363, 248-250.
  58. Sarmiento, J.L., Toggweiler, J.R., 1984. A new model for the role of oceans in determining pCO . Nature 308, 621-624.
  59. Savinov, V.M., 1992. Spatial distribution of chlorophyll and Ž . primary production. In: Russian Academy Sciences Eds. : Phytoplankton in the Barents Sea. Kola Centre. Murmansk Marine Biological Institute. Apatity, pp. 52-53.
  60. Schauer, U., Harms, I., Owrid, G., Petrov, V., Shaban, A., Strass, Ž .
  61. V., 1992. Physical oceanography. In: Rachor, E. Ed. , Scien- tific Cruise Report of the 1991 Arctic Expedition ARK VIIIr2 Ž of RrV Polarstern EPOS II: Study of the European Arctic .
  62. Shelf, ASEASB, of the European Science Foundation . Ber. Polarforschung, vol. 115, pp. 21-30.
  63. Schulenberger, E., Reid, J.L., 1981. The Pacific shallow oxygen maximum, deep chlorophyll maximum and primary productiv- ity reconsidered. Deep-Sea Res. 28, 901-919.
  64. Slagstad, D., Wassmann, P., 1996. Climate change and carbon flux in the Barents Sea: 3-D simulations of ice-distributions, (
  65. A. Luchetta et al.r Journal of Marine Systems 27 2000 177-193 193 primary production and vertical export of particulate organic carbon. Mem. Natl. Inst. Polar Res. 51, 119-141.
  66. Smetacek, V., 1975. Die Sukzession des Phytoplankton der west- lichen Kieler Bucht. PhD thesis, Univ. Kiel, pp. 1-151.
  67. Smith, W.O., 1993. Nitrogen uptake and new production in the Greenland Sea: the Spring Phaeocystis bloom. J. Geophys. Ž . Res. 98 C3 , 4681-4688.
  68. Smith, W.O., 1994. Primary productivity of a Phaeocystis bloom in the Greenland Sea during Spring, 1989. In: Johannessen, Ž .
  69. O.M., Muench, R.D., Overland, J.E. Eds. , The Polar Oceans and Their Role in Shaping the Global Environment. Geophys. Monogr. 85, Am. Geophys. Union, pp. 263-272.
  70. Smith, W.O., 1995. Primary productivity and new production in Ž . the Northeast Water Polynya Greenland during summer 1992. Ž . J. Geophys. Res. 100 C3 , 4357-4370.
  71. Smith, W.O., Nelson, D.M., 1985. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with density field. Science 227, 163-166.
  72. Smith, W.O. Jr., Codispoti, L.A., Nelson, D.M., Manley, T., Buskey, E.J., Niebauer, H.J., Cota, G.F., 1991. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352, 514-516.
  73. Smith, W.O., Walsh, I.D., Booth, B.C., Deming, J.W., 1995. Particulate matter and phytoplankton and bacterial biomass distributions in the Northeast Water Polynya during summer Ž . 1992. J. Geophys. Res. 100 C3 , 4341-4356.
  74. Steinhorn, I., 1985. The disappearance of the long-term meromic- tic stratification of the Dead Sea. Limnol. Oceanogr. 30, 451-472.
  75. Strass, V.H., Nothig, E.-M., 1996. Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol. 16, 409-422.
  76. Strathmann, R.R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12, 411-418.
  77. Strickland, J.D.H., Parson, T.R., 1972. A Practical Handbook of Seawater Analysis. 2nd edn. Fish. Res. Board Can., Bull. no. 167, 311 pp.
  78. Subba Rao, D.V., Platt, T., 1984. Primary production of Arctic waters. Polar Biol. 3, 191-201.
  79. Utermohl, F., 1958. Zur Vervolkommung der quantitativen Phyto- plankton-Methodik. Mitt. Int. Ver. Limnol. 9, 1-38.
  80. Wallace, D.W.R., Minnet, P.J., Hopkins, T.S., 1995. Nutrients, oxygen and inferred new production in the Northeast water Ž . Polynya, 1992. J. Geophys. Res. 100 C3 , 4323-4340.
  81. Walsh, J., 1989. Arctic carbon sinks: present and future. Global Biogeochem. Cycles 3, 393-411.
  82. Wassmann, P., 1989. Sedimentation of organic matter and silicate from the euphotic zone of the Barents Sea. Cons. Int. Explor. Mer., Rapp. P.-V. Reun 188, 108-114.
  83. Wassmann, P., Vernet, M., Mitchell, B.G., Rey, F., 1990. Mass sedimentation of Phaeocystis pouchetii in the Barents Sea. Mar. Ecol. Prog. Ser. 66, 183-195.
  84. Zheng, Y., Schlosser, P., Swift, J.H., Jones, E.P., 1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implica- Ž . tions for new production. Deep-Sea Res., Part I 44 123 , 1923-1943.