The effect of different anesthetics on neurovascular coupling (original) (raw)

Anesthesia and the Quantitative Evaluation of Neurovascular Coupling

Journal of Cerebral Blood Flow & Metabolism, 2012

Anesthesia has broad actions that include changing neuronal excitability, vascular reactivity, and other baseline physiologies and eventually modifies the neurovascular coupling relationship. Here, we review the effects of anesthesia on the spatial propagation, temporal dynamics, and quantitative relationship between the neural and vascular responses to cortical stimulation. Previous studies have shown that the onset latency of evoked cerebral blood flow (CBF) changes is relatively consistent across anesthesia conditions compared with variations in the time-to-peak. This finding indicates that the mechanism of vasodilation onset is less dependent on anesthesia interference, while vasodilation dynamics are subject to this interference. The quantitative coupling relationship is largely influenced by the type and dosage of anesthesia, including the actions on neural processing, vasoactive signal transmission, and vascular reactivity. The effects of anesthesia on the spatial gap between...

Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime

Scientific reports, 2015

Neural activity is closely followed by a localised change in cerebral blood flow, a process termed neurovascular coupling. These hemodynamic changes form the basis of contrast in functional magnetic resonance imaging (fMRI) and are used as a correlate for neural activity. Anesthesia is widely employed in animal fMRI and neurovascular studies, however anesthetics are known to profoundly affect neural and vascular physiology, particularly in mice. Therefore, we investigated the efficacy of a novel 'modular' anesthesia that combined injectable (fentanyl-fluanisone/midazolam) and volatile (isoflurane) anesthetics in mice. To characterize sensory-evoked cortical hemodynamic responses, we used optical imaging spectroscopy to produce functional maps of changes in tissue oxygenation and blood volume in response to mechanical whisker stimulation. Following fine-tuning of the anesthetic regime, stimulation elicited large and robust hemodynamic responses in the somatosensory cortex, ch...

Coupling between somatosensory evoked potentials and hemodynamic response in the rat

Journal of Neuroimmunology, 2008

We studied the relationship between somatosensory evoked potentials (SEP) recorded with scalp electroencephalography (EEG) and hemoglobin responses recorded non-invasively with diffuse optical imaging (DOI) during parametrically varied electrical forepaw stimulation in rats. Using these macroscopic techniques we verified that the hemodynamic response is not linearly coupled to the somatosensory evoked potentials, and that a power or threshold law best describes the coupling between SEP and the hemoglobin response, in agreement with the results of most invasive studies. We decompose the SEP response in three components (P1, N1, and P2) to determine which best predicts the hemoglobin response. We found that N1 and P2 predict the hemoglobin response significantly better than P1 and the input stimuli (S). Previous electrophysiology studies reported in the literature show that P1 originates in layer IV directly from thalamocortical afferents, while N1 and P2 originate in layers I and II and reflect the majority of local cortico–cortical interactions. Our results suggest that the evoked hemoglobin response is driven by the cortical synaptic activity and not by direct thalamic input. The N1 and P2 components, and not P1, need to be considered to correctly interpret neurovascular coupling.

Comparison of Anesthetic Depth Indexes Based on Thalamocortical Local Field Potentials in Rats

Anesthesiology, 2010

Background: Local field potentials may allow a more precise analysis of the brain electrical activity than the electroencephalogram. In this study, local field potentials were recorded in the thalamocortical axis of rats to (i) compare the performance of several indexes of anesthetic depth and (ii) investigate the existence of thalamocortical correlated or disrupted activity during isoflurane steadystate anesthesia. Methods: Five rats chronically implanted with microelectrodes were used to record local field potentials in the primary somatosensory cortex and ventroposterolateral thalamic nuclei at six periods: before induction of anesthesia; in the last 5 min of randomized 20-min steady-state end-tidal 0.8, 1.1, 1.4, and 1.7% isoflurane concentrations; and after recovery. The approximate entropy, the index of consciousness, the spectral edge frequency, and the permutation entropy were estimated using epochs of 8 s. A correction factor for burst suppression was applied to the spectral edge frequency and to the permutation entropy. The correlation between the derived indexes and the end-tidal isoflurane was calculated and compared for the two studied brain regions indexes. Coherence analysis was also performed. Results: The burst suppression-corrected permutation entropy showed the highest correlation with the end-tidal isoflurane concentration, and a high coherence was obtained between the two studied areas. Conclusions: The permutation entropy corrected with the classic burst suppression ratio is a promising alternative to other indexes of anesthetic depth. Furthermore, high coherence level of activity exists between the somatosensory cortical and thalamic regions, even at deep isoflurane stages.

Decreased Thalamic Activity Is a Correlate for Disconnectedness during Anesthesia with Propofol, Dexmedetomidine and Sevoflurane But Not S-Ketamine

The Journal of Neuroscience

Establishing the neural mechanisms responsible for the altered global states of consciousness during anesthesia and dissociating these from other drug-related effects remains a challenge in consciousness research. We investigated differences in brain activity between connectedness and disconnectedness by administering various anesthetics at concentrations designed to render 50% of the subjects unresponsive. One hundred and sixty healthy male subjects were randomized to receive either propofol (1.7 μg/ml;n= 40), dexmedetomidine (1.5 ng/ml;n= 40), sevoflurane (0.9% end-tidal;n= 40), S-ketamine (0.75 μg/ml;n= 20), or saline placebo (n= 20) for 60 min using target-controlled infusions or vaporizer with end-tidal monitoring. Disconnectedness was defined as unresponsiveness to verbal commands probed at 2.5-min intervals and unawareness of external events in a postanesthesia interview. High-resolution positron emission tomography (PET) was used to quantify regional cerebral metabolic rates...

Differential Dynamic of Action on Cortical and Subcortical Structures of Anesthetic Agents during Induction of Anesthesia

Anesthesiology, 2007

Dynamic action of anesthetic agents was compared at cortical and subcortical levels during induction of anesthesia. Unconsciousness involved the cortical brain but suppression of movement in response to noxious stimuli was mediated through subcortical structures. Twenty-five patients with Parkinson disease, previously implanted with a deep-brain stimulation electrode, were enrolled during the implantation of the definitive pulse generator. During induction of anesthesia with propofol (n = 13) or sevoflurane (n = 12) alone, cortical (EEG) and subcortical (ESCoG) electrogenesis were obtained, respectively, from a frontal montage (F3-C3) and through the deep-brain electrode (p0-p3). In EEG and ESCoG spectral analysis, spectral edge (90%) frequency, median power frequency, and nonlinear analysis dimensional activation calculations were determined. Sevoflurane and propofol decreased EEG and ESCoG activity in a dose-related fashion. EEG values decreased dramatically at loss of consciousness, whereas there was little change in ESCoG values. Quantitative parameters derived from EEG but not from ESCoG were able to predict consciousness versus unconsciousness. Conversely, quantitative parameters derived from ESCoG but not from EEG were able to predict movement in response to laryngoscopy. These data suggest that in humans, unconsciousness mainly involves the cortical brain, but that suppression of movement in response to noxious stimuli is mediated through the effect of anesthetic agents on subcortical structures.

Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review

International Journal of Molecular Sciences

General anesthesia in animal experiments is an ethical must and is required for all the procedures that are likely to cause more than slight or momentary pain. As anesthetics are known to deeply affect experimental findings, including electrophysiological recordings of brain activity, understanding their mechanism of action is of paramount importance. It is widely recognized that the depth and type of anesthesia introduce significant bias in electrophysiological measurements by affecting the shape of both spontaneous and evoked signals, e.g., modifying their latency and relative amplitude. Therefore, for a given experimental protocol, it is relevant to identify the appropriate anesthetic, to minimize the impact on neuronal circuits and related signals under investigation. This review focuses on the effect of different anesthetics on cortical electrical recordings, examining their molecular mechanisms of action, their influence on neuronal microcircuits and, consequently, their impac...

Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2015

Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavio...

Early and late stimulus-evoked cortical hemodynamic responses provide insight into the neurogenic nature of neurovascular coupling

Journal of Cerebral Blood Flow & Metabolism, 2012

Understanding neurovascular coupling is a prerequisite for the interpretation of results obtained from modern neuroimaging techniques. This study investigated the hemodynamic and neural responses in rat somatosensory cortex elicited by 16 seconds electrical whisker stimuli. Hemodynamics were measured by optical imaging spectroscopy and neural activity by multichannel electrophysiology. Previous studies have suggested that the whisker-evoked hemodynamic response contains two mechanisms, a transient 'backwards' dilation of the middle cerebral artery, followed by an increase in blood volume localized to the site of neural activity. To distinguish between the mechanisms responsible for these aspects of the response, we presented whisker stimuli during normocapnia ('control'), and during a high level of hypercapnia. Hypercapnia was used to 'predilate' arteries and thus possibly 'inhibit' aspects of the response related to the 'early' mechanism. Indeed, hemodynamic data suggested that the transient stimulus-evoked response was absent under hypercapnia. However, evoked neural responses were also altered during hypercapnia and convolution of the neural responses from both the normocapnic and hypercapnic conditions with a canonical impulse response function, suggested that neurovascular coupling was similar in both conditions. Although data did not clearly dissociate early and late vascular responses, they suggest that the neurovascular coupling relationship is neurogenic in origin.