Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? (original) (raw)

Identification and Characterization of a New Family of Guanine Nucleotide Exchange Factors for the Ras-related GTPase Ral

Journal of Biological Chemistry, 2000

Guanine nucleotide exchange factors (GEFs) are responsible for coupling cell surface receptors to Ras protein activation. Here we describe the characterization of a novel family of differentially expressed GEFs, identified by database sequence homology searching. These molecules share the core catalytic domain of other Ras family GEFs but lack the catalytic non-conserved (conserved non-catalytic/Ras exchange motif/structurally conserved region 0) domain that is believed to contribute to Sos1 integrity. In vitro binding and in vivo nucleotide exchange assays indicate that these GEFs specifically catalyze the GTP loading of the Ral GTPase when overexpressed in 293T cells. A central proline-rich motif associated with the Src homology (SH)2/SH3-containing adapter proteins Grb2 and Nck in vivo, whereas a pleckstrin homology (PH) domain was located at the GEF C terminus. We refer to these GEFs as RalGPS 1A, 1B, and 2 (Ral GEFs with PH domain and SH3 binding motif). The PH domain was required for in vivo GEF activity and could be functionally replaced by the Ki-Ras C terminus, suggesting a role in membrane targeting. In the absence of the PH domain RalGPS 1B cooperated with Grb2 to promote Ral activation, indicating that SH3 domain interaction also contributes to RalGPS regulation. In contrast to the Ral guanine nucleotide dissociation stimulator family of Ral GEFs, the RalGPS proteins do not possess a Ras-GTP-binding domain, suggesting that they are activated in a Ras-independent manner.

Guanine nucleotide exchange factors: Activators of the Ras superfamily of proteins

BioEssays, 1995

Members of the Ras superfamily of proteins function as regulated GDP/GTP switches that cycle between active GTP-complexed and inactive GDP-complexed states. Guanine nucleotide exchange factors (GEFs) stimulate formation of the GTP-bound state, whereas GTPase activating proteins (GAPs) catalyze the formation of the GDP-bound state. We describe three studies that evaluate the mechanism of action of GEFs for Ras (SOS1 and RasGRF/ CDC25) or Ras-related Rho (Dbl and Vav) proteins. Growth factor-mediated activation of Ras is believed to be MEMBRANE TRANSLOCATION MECHANISM OF RAS GEF ACTIVATION? Quite a diverse collection of extracellular ligands can stimulate Ras by activating their cognate receptors (Satoh et al., 1992; Khosravi-Far and Der, 1994). All of these factors, including neurotransmitters, hormones, growth factors, and cytokines cause transient increases in Ras-GTP levels. In resting, unstimulated cells, the level of Ras-GTP is approximately 1-5% of the total Ras protein pool. Upon stimulation by extracellular

Differential Regulation of RasGAPs in Cancer

Genes & Cancer, 2011

Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell-and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.

Involvement of the Switch 2 Domain of Ras in Its Interaction with Guanine Nucleotide Exchange Factors

Journal of Biological Chemistry, 1996

While Ras proteins are activated by stimulated GDP release, which enables acquisition of the active GTPbound state, little is known about how guanine nucleotide exchange factors (GEFs) interact with Ras to promote this exchange reaction. Here we report that mutations within the switch 2 domain of Ras (residues 62-69) inhibit activation of Ras by the mammalian GEFs, Sos1, and GRF/CDC25 Mm. While mutations in the 62-69 region blocked upstream activation of Ras, they did not disrupt Ras effector functions, including transcriptional activation and transformation of NIH 3T3 cells. Biochemical analysis indicated that the loss of GEF responsiveness of a Ras(69N) mutant was due to a loss of GEF binding, with no change in intrinsic nucleotide exchange activity. Furthermore, structural analysis of Ras(69N) using NMR spectroscopy indicated that mutation of residue 69 had a very localized effect on Ras structure that was limited to ␣-helix 2 of the switch 2 domain. Together, these results suggest that the switch 2 domain of Ras forms a direct interaction with GEFs.

Identification and Characterization of RA-GEF-2, a Rap Guanine Nucleotide Exchange Factor That Serves as a Downstream Target of M-Ras

Journal of Biological Chemistry, 2001

The Ras family small GTPase Rap is regulated by an array of specific guanine nucleotide exchange factors (GEFs) in response to upstream stimuli. RA-GEF-1 was identified as a novel Rap GEF, which possesses a Ras/ Rap1-associating (RA) domain. Here we report a protein closely related to RA-GEF-1, named RA-GEF-2. Like RA-GEF-1, a putative cyclic nucleotide monophosphatebinding domain, a Ras exchanger motif, a PSD-95/DlgA/ ZO-1 domain, and an RA domain in addition to the GEF catalytic domain are found in RA-GEF-2. However, RA-GEF-2 displays a different tissue distribution profile from that of RA-GEF-1. RA-GEF-2 stimulates guanine nucleotide exchange of both Rap1 and Rap2, but not Ha-Ras. The RA domain of RA-GEF-2 binds to M-Ras in a GTP-dependent manner, but not to other Ras family GTPases tested,

The Ras Superfamily of Small GTPases: The Unlocked Secrets

Methods in Molecular Biology, 2013

The Ras superfamily of small GTPases is composed of more than 150 members, which share a conserved structure and biochemical properties, acting as binary molecular switches turned on by binding GTP and off by hydrolyzing GTP to GDP. However, despite considerable structural and biochemical similarities, these proteins play multiple and divergent roles, being versatile and key regulators of virtually all fundamental cellular processes. Conversely, their dysfunction plays a crucial role in the pathogenesis of serious human diseases, including cancer and developmental syndromes.