Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation (original) (raw)
Related papers
Key Words. Mesenchymal stem cells • Cardiac • c-kit • Myocardial infarction •
2012
Whereas cardiac-derived c-kit ؉ stem cells (CSCs) and bone marrow-derived mesenchymal stem cells (MSCs) are undergoing clinical trials testing safety and efficacy as a cell-based therapy, the relative therapeutic and biologic efficacy of these two cell types is unknown. We hypothesized that human CSCs have greater ability than MSCs to engraft, differentiate, and improve cardiac function. We compared intramyocardial injection of human fetal CSCs (36,000) with two doses of adult MSCs (36,000 and 1,000,000) or control (phosphate buffered saline) in nonobese diabetic/severe combined immune deficiency mice after coronary artery ligation. The myocardial infarction-induced enlargement in left ventricular chamber dimensions was ameliorated by CSCs (p < .05 for diastolic and systolic volumes), as was the decline in ejection fraction (EF; p < .05). Whereas 1 ؋ 10 6 MSCs partially ameliorated ventricular remodeling and improved EF to a similar degree as CSCs, 36,000 MSCs did not influence chamber architecture or function. All cell therapies improved myocardial contractility, but CSCs preferentially reduced scar size and reduced vascular afterload. Engraftment and trilineage differentiation was substantially greater with CSCs than with MSCs. Adult-cultured c-kit ؉ CSCs were less effective than fetal, but were still more potent than high-dose MSCs. These data demonstrate enhanced CSC engraftment, differentiation, and improved cardiac remodeling and function in ischemic heart failure. MSCs required a 30-fold greater dose than CSCs to improve cardiac function and anatomy. Together, these findings demonstrate a greater potency of CSCs than bone marrow MSCs in cardiac repair.
Stem Cells Translational Medicine, 2012
Whereas cardiac-derived c-kit ؉ stem cells (CSCs) and bone marrow-derived mesenchymal stem cells (MSCs) are undergoing clinical trials testing safety and efficacy as a cell-based therapy, the relative therapeutic and biologic efficacy of these two cell types is unknown. We hypothesized that human CSCs have greater ability than MSCs to engraft, differentiate, and improve cardiac function. We compared intramyocardial injection of human fetal CSCs (36,000) with two doses of adult MSCs (36,000 and 1,000,000) or control (phosphate buffered saline) in nonobese diabetic/severe combined immune deficiency mice after coronary artery ligation. The myocardial infarction-induced enlargement in left ventricular chamber dimensions was ameliorated by CSCs (p < .05 for diastolic and systolic volumes), as was the decline in ejection fraction (EF; p < .05). Whereas 1 ؋ 10 6 MSCs partially ameliorated ventricular remodeling and improved EF to a similar degree as CSCs, 36,000 MSCs did not influence chamber architecture or function. All cell therapies improved myocardial contractility, but CSCs preferentially reduced scar size and reduced vascular afterload. Engraftment and trilineage differentiation was substantially greater with CSCs than with MSCs. Adult-cultured c-kit ؉ CSCs were less effective than fetal, but were still more potent than high-dose MSCs. These data demonstrate enhanced CSC engraftment, differentiation, and improved cardiac remodeling and function in ischemic heart failure. MSCs required a 30-fold greater dose than CSCs to improve cardiac function and anatomy. Together, these findings demonstrate a greater potency of CSCs than bone marrow MSCs in cardiac repair. STEM CELLS TRANSLATIONAL MEDICINE 2012;1:116 -124
Stem Cells and Development, 2012
Despite their paracrine activites, cardiomyogenic differentiation of bone marrow (BM)-derived mesenchymal stem cells (MSCs) is thought to contribute to cardiac regeneration. To systematically evaluate the role of differentiation in MSC-mediated cardiac regeneration, the cardiomyogenic differentiation potential of human MSCs (hMSCs) and murine MSCs (mMSCs) was investigated in vitro and in vivo by inducing cardiomyogenic and noncardiomyogenic differentiation. Untreated hMSCs showed upregulation of cardiac tropopin I, cardiac actin, and myosin light chain mRNA and protein, and treatment of hMSCs with various cardiomyogenic differentiation media led to an enhanced expression of cardiomyogenic genes and proteins; however, no functional cardiomyogenic differentiation of hMSCs was observed. Moreover, co-culturing of hMSCs with cardiomyocytes derived from murine pluripotent cells (mcP19) or with murine fetal cardiomyocytes (mfCMCs) did not result in functional cardiomyogenic differentiation of hMSCs. Despite direct contact to beating mfCMCs, hMSCs could be effectively differentiated into cells of only the adipogenic and osteogenic lineage. After intramyocardial transplantation into a mouse model of myocardial infarction, Sca-1 + mMSCs migrated to the infarcted area and survived at least 14 days but showed inconsistent evidence of functional cardiomyogenic differentiation. Neither in vitro treatment nor intramyocardial transplantation of MSCs reliably generated MSC-derived cardiomyocytes, indicating that functional cardiomyogenic differentiation of BM-derived MSCs is a rare event and, therefore, may not be the main contributor to cardiac regeneration.
Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy
Basic research in cardiology, 2005
Current treatments for ischemic cardiomyopathy are aimed toward minimizing the deleterious consequences of diseased myocardium. The possibility of treating heart failure by generating new myocardium and vascular tissue has been an impetus toward recent stem cell research. Mesenchymal stem cells (MSC), also referred to as marrow stromal cells, differentiate into a wide variety of lineages, including myocardial and endothelial cells. The multi-lineage potential of MSCs, their ability to elude detection by the host immune system, and their relative ease of expansion in culture make MSCs a very promising source of stem cells for transplantation. In addition, emerging experimental results with MSCs offer novel mechanistic insights into cardiac regenerative therapy in general. Here we review the characterization of MSCs, animal and human trials studying MSCs in cardiomyogenesis and vasculogenesis in postinfarct myocardium, routes of delivery, and potential mechanisms of stem cell repair.
Mesenchymal Stem Cells and Their Potential as Cardiac Therapeutics
Circulation Research, 2004
Mesenchymal stem cells (MSCs) represent a stem cell population present in adult tissues that can be isolated, expanded in culture, and characterized in vitro and in vivo. MSCs differentiate readily into chondrocytes, adipocytes, osteocytes, and they can support hematopoietic stem cells or embryonic stem cells in culture. Evidence suggests MSCs can also express phenotypic characteristics of endothelial, neural, smooth muscle, skeletal myoblasts, and cardiac myocyte cells. When introduced into the infarcted heart, MSCs prevent deleterious remodeling and improve recovery, although further understanding of MSC differentiation in the cardiac scar tissue is still needed. MSCs have been injected directly into the infarct, or they have been administered intravenously and seen to home to the site of injury. Examination of the interaction of allogeneic MSCs with cells of the immune system indicates little rejection by T cells. Persistence of allogeneic MSCs in vivo suggests their potential "off the shelf" therapeutic use for multiple recipients. Clinical use of cultured human MSCs (hMSCs) has begun for cancer patients, and recipients have received autologous or allogeneic MSCs. Research continues to support the desirable traits of MSCs for development of cellular therapeutics for many tissues, including the cardiovascular system. In summary, hMSCs isolated from adult bone marrow provide an excellent model for development of stem cell therapeutics, and their potential use in the cardiovascular system is currently under investigation in the laboratory and clinical settings. (Circ Res. 2004;95:9-20.)
American Journal of Physiology-Heart and Circulatory Physiology, 2004
Mesenchymal stem cells (MSCs) are pluripotent cells that differentiate into a variety of cells, including cardiomyocytes and endothelial cells. However, little information is available regarding the therapeutic potency of systemically delivered MSCs for myocardial infarction. Accordingly, we investigated whether intravenously transplanted MSCs induce angiogenesis and myogenesis and improve cardiac function in rats with acute myocardial infarction. MSCs were isolated from bone marrow aspirates of isogenic adult rats and expanded ex vivo. At 3 h after coronary ligation, 5 × 106 MSCs (MSC group, n = 12) or vehicle (control group, n = 12) was intravenously administered to Lewis rats. Transplanted MSCs were preferentially attracted to the infarcted, but not the noninfarcted, myocardium. The engrafted MSCs were positive for cardiac markers: desmin, cardiac troponin T, and connexin43. On the other hand, some of the transplanted MSCs were positive for von Willebrand factor and formed vascul...
To develop an effective therapeutic strategy for cardiac regeneration using bone marrow mesenchymal stem cells (BM- MSCs), the primary mouse BM-MSCs (1st BM-MSCs) and 5th passage BM-MSCs from b-galactosidase transgenic mice were respectively intramyocardially transplanted into the acute myocardial infarction (AMI) model of wild type mice. At the 6th week, animals/tissues from the 1st BM-MSCs group, the 5th passage BM-MSCs group, control group were examined. Our results revealed that, compared to the 5th passage BM-MSCs, the 1st BM-MSCs had better therapeutic effects in the mouse MI model. The 1st BM-MSCs maintained greater differentiation potentials towards cardiomocytes or vascular endothelial cells in vitro. This is indicated by higher expressions of cardiomyocyte and vascular endothelial cell mature markers in vitro. Furthermore, we identified that 24 proteins were down-regulated and 3 proteins were up-regulated in the 5th BM-MSCs in comparison to the 1st BM-MSCs, using mass spectrometry following two-dimensional electrophoresis. Our data suggest that transplantation of the 1st BM-MSCs may be an effective therapeutic strategy for cardiac tissue regeneration following AMI, and altered protein expression profiles between the 1st BM-MSCs and 5th passage BM-MSCs may account for the difference in their maintenance of stemness and their therapeutic effects following AMI.
Human Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the Adult Murine Heart
Circulation, 2002
Background — Cellular cardiomyoplasty has been proposed as an alternative strategy for augmenting the function of diseased myocardium. We investigated the potential of human mesenchymal stem cells (hMSCs) from adult bone marrow to undergo myogenic differentiation once transplanted into the adult murine myocardium. Methods and Results — A small bone marrow aspirate was taken from the iliac crest of healthy human volunteers, and hMSCs were isolated as previously described. The stem cells, labeled with lacZ , were injected into the left ventricle of CB17 SCID/ beige adult mice. At 4 days after injection, none of the engrafted hMSCs expressed myogenic markers. A limited number of cells survived past 1 week and over time morphologically resembled the surrounding host cardiomyocytes. Immunohistochemistry revealed de novo expression of desmin, β-myosin heavy chain, α-actinin, cardiac troponin T, and phospholamban at levels comparable to those of the host cardiomyocytes; sarcomeric organiza...