Formation of porous natural-synthetic polymer composites using emulsion templating and supercritical fluid assisted impregnation (original) (raw)

Polymer Bulletin, 2007

Abstract

Porous natural-synthetic polymer composites were prepared using an alginate emulsion templating step followed by supercritical carbon dioxide (sc-CO2) assisted impregnation (and subsequent polymerisation) of synthetic monomer mixtures. In the impregnation step, an initiator and either 2-hydroxyethylmethacrylate (HEMA), butylmethacrylate (BMA), ethyleneglycoldimethacrylate (EGDMA) or trimethylolpropanetrimethacrylate (TRIM) monomers, respectively, were used. After impregnation into the porous alginate foam, the synthetic monomer(s) were polymerised in situ, forming porous composites with increased stiffness. A number of methods were used to assess the effects of the impregnation/polymerisation process including uniaxial compression testing, scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), helium pycnometry and Fourier transform infra-red (FTIR) spectroscopy. Our results suggest that alginate foams impregnated with HEMA show higher weight gains and are stiffer than those impregnated with BMA. Such stiffer porous composites are potentially better suited than the unmodified materials in applications such as tissue engineering (cell-seeded) scaffolds, where mechanical conditioning is desired to stimulate cells for development of neo tissue growth.

Andrew Hebb hasn't uploaded this paper.

Let Andrew know you want this paper to be uploaded.

Ask for this paper to be uploaded.