Photoinduced Charge Carrier Generation and Decay in Sequentially Deposited Polymer/Fullerene Layers: Bulk Heterojunction vs. Planar Interface (original) (raw)

2012, Journal of Physical Chemistry C

In this work, we use the time-resolved microwave conductivity (TRMC) technique to study the dynamics of charge carrier generation in sequentially deposited conjugated polymer/fullerene layers. These layers are either fully solution-processed, using orthogonal solvents for the layers of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene phenyl-C 61 -butyric acid methyl ester (PCBM), or prepared by thermally evaporating a C 60 layer onto P3HT films. Our work is motivated by the remarkable efficiency of organic photovoltaic (OPV) devices using a sequentially processed P3HT/PCBM active layer. Here we use an electrodeless photoconductivity probe, so we can photoexcite the sample either through the polymer or the fullerene layer. We use samples with extremely thick P3HT films (2.4 μm) and show that excitation from either side of both as-cast and thermally annealed sample yields virtually identical results, consistent with mixing of the PCBM into the polymer film. We also compare solution-deposited samples to samples made by thermally evaporating C 60 on P3HT, and find that we can distinguish between charge generation in bulk-P3HT and at the polymer/ fullerene interface. We show that, despite their morphological differences, the carrier dynamics in the sequentially processed samples resemble those of mixed, bulk heterojunction (BHJ) systems. All of this is consistent with the idea that PCBM readily mixes into the P3HT film in sequentially deposited P3HT/PCBM samples, although the total amount of fullerene mixed into the P3HT appears to be less than that typically used in an optimized BHJ. Finally, we discuss the implications for OPV device architectures prepared by sequential deposition from solution.

Sign up to get access to over 50M papers

Sign up for access to the world's latest research

Organic Field-Effect Devices as Tool to Characterize the Bipolar Transport in Polymer-Fullerene Blends: The Case of P3HT-PCBM

Advanced Functional Materials, 2007

In organic bulk heterojunction solar cells (oBHJ) the blend morphology in combination with the charge transport properties of the individual components controls the extracted photocurrent. The organic field-effect transistor (OFET) has been proved as a powerful instrument to evaluate the unipolar carrier transport properties in a wide range of cases. In our work we extend the OFET concept to the evaluation of the bipolar transport properties in polymer-fullerenes blends and propose a method to improve the accuracy of the evaluation. The method is based on capacitance-voltage (C-V) measurements on MOS structures prepared on the same blends and delivers complementary information on the bulk heterojunction to the one obtained with FETs. The relevance for photovoltaic applications is investigated through the correlation between the current-voltage behavior of solar cells and the bipolar mobility for composites with varying polymer molecular weight and processed from different solvents. In particular the transport features of solar cells produced from o-Xylene (oX), a non chlorinated solvent more suitable to production requirements, have been compared to the one of devices cast from Chlorobenzene (CB) solution. For the P3HT-PCBM blend a consistent correlation between the mobility and the electrical fill factor and power performance was found. A significant asymmetry in the bipolar carrier mobility, together with low electron mobility dependent on the M w value, affects the performances of thick o-Xylene cast devices. In the case of devices processed from Chlorobenzene the slower carrier has higher mobility and the small electrical losses detected are eventually more related to the formation of space-charge and eventually to surface recombination. This results in an efficient charge collection that is almost thickness independent. We report a dependence of the slow-carrier type (electrons or holes) and their mobility on the specific combination of molecular weight and solvent. The mobility data and the solar cell performance coherently fit to the prediction of a device model only based on the drift of carriers under the built-in electric field originated in the donor-acceptor oBHJ.

Combined effects of carriers charge mobility and electrodes work function on the performances of polymer/fullerene P3HT:PCBM based organic photovoltaic solar cell

The European Physical Journal Applied Physics, 2018

This paper reports a study on the effect of different parameters such as charge carriers mobility, electrodes work function, energy gap, series as well as shunt resistances on the performances of an organic photovoltaic cell based on polymer/fullerene P3HT: PCBM. Thus, numerical simulations have been investigated on ITO/PEDOT:PSS/P3HT: PCBM/LiF/Al structure with Analysis of Microelectronic and Photonic Structures the simulation one dimension (AMPS-1D) and General-Purpose Photovoltaic Device Model (GPVDM) softwares. The results show that the optimum efficiency is obtained for electron and hole motility values of 10−4 cm2 V−1 s−1 and 2 × 10−4 cm2 V−1 s−1, respectively. Moreover, we reported that the ohmic contact for both anode and cathode electrodes of the investigated device remains very important to get the maximum efficiency. Furthermore, when the gap energy increases, the efficiency is considerably improved, and reach's a value of about 5.421%. In addition, in this present wo...

Photoinduced Carrier Generation and Decay Dynamics in Intercalated and Non-intercalated Polymer:Fullerene Bulk Heterojunctions

ACS Nano, 2011

The dependence of photoinduced carrier generation and decay on donorÀacceptor nanomorphology is reported as a function of composition for blends of the polymer poly(2,5-bis(3tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C 14 ) with two electron-accepting fullerenes: phenyl-C 71 -butyric acid methyl ester (PC 71 BM) or the bisadduct of phenyl-C 61 -butyric acid methyl ester (bis-PC 61 BM). The formation of partially or fully intercalated bimolecular crystals at weight ratios up to 1:1 for pBTTT-C 14 :PC 71 BM blends leads to efficient exciton quenching due to a combination of static and dynamic mechanisms. At higher fullerene loadings, pure PC 71 BM domains are formed that result in an enhanced free carrier lifetime, as a consequence of spatial separation of the electron and hole into different phases, and the dominant contribution to the photoconductance comes from the high-frequency electron mobility in the fullerene clusters. In the pBTTT-C 14 :bis-PC 61 BM system, phase separation results in a non-intercalated structure, independent of composition, which is characterized by exciton quenching that is dominated by a dynamic process, an enhanced carrier lifetime and a hole-dominated photoconductance signal. The results indicate that intercalation of fullerene into crystalline polymer domains is not detrimental to the density of longlived carriers, suggesting that efficient organic photovoltaic devices could be fabricated that incorporate intercalated structures, provided that an additional pure fullerene phase is present for charge extraction.

The miscibility and depth profile of PCBM in P3HT: Thermodynamic information to improve organic photovoltaics

2012

Recent work has shown that poly(3-hexylthiophene) (P3HT) and the surface-functionalized fullerene 1-(3-methyloxycarbonyl)propyl(1-phenyl[6,6])C 61 (PCBM) are much more miscible than originally thought, and the evidence of this miscibility requires a return to understanding the optimal morphology and structure of organic photovoltaic active layers. This manuscript describes the results of experiments that were designed to provide quantitative thermodynamic information on the miscibility, interdiffusion, and depth profile of P3HT : PCBM thin films that are formed by thermally annealing initial bilayers. It is found that the resultant thin films consist of a 'bulk' layer that is not influenced by the air or substrate surface. The composition of PCBM in this 'bulk' layer increases with increased PCBM loading in the original bilayer until the 'bulk' layer contains 22 vol% PCBM. The introduction of additional PCBM into the sample does not increase the amount of PCBM dispersed in this 'bulk' layer. This observation is interpreted to indicate that the miscibility limit of PCBM in P3HT is 22 vol%, while the precise characterization of the depth profiles in these films shows that the PCBM selectively segregates to the silicon and near air surface. The selective segregation of the PCBM near the air surface is ascribed to an entropic driving force.

The Effect of Fullerene Derivatives Ratio on P3HT-based Organic Solar Cells

Energy Procedia, 2015

The effect of fullerene ratio PCBM and ICBA on the P3HT-based solar cells were investigated under ambient conditions; the ratio was varied in the range of 1-3. The optical, morphological, structural, and electrical characteristics were investigated both in dark and under illumination. The absorption spectra have revealed a decrease in the intensities by increasing the fullerene ratio and the peaks were blue shifted. Moreover, florescence spectra demonstrated charge transfer from P3HT to fullerene molecules due to uniform distribution of fullerene domains within the P3HT matrix. XRD patterns have shown a strong reduction in the crystallinity by increasing the ratio of fullerene within the blend. Furthermore, AFM images showed smother surface corresponding to pinholes with higher ratio while rougher surface with lower fullerene ratio was observed. The best performance was recorded for P3HT:PCBM (3:1) with VOC = 0.58 volt, JSC = 9.9 mA.cm-2 and PCE 1.82%. The fill factor (FF) was found to be small for all studied samples which could be associated with the preparation conditions where all samples were prepared under normal ambient. Devices which demonstrated best performance were attributed to improved crystallinity and enhanced light absorption of the active layer.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.