Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations (original) (raw)

2006, Astrophysical Journal

Using very deep Spitzer/MIPS 24 micron observations, we present an analysis of the bolometric luminosities (L[bol]) and UV extinction properties of more than 200 spectroscopically identified, optically selected (UGR) z~2 galaxies in the GOODS-N field. The large spectroscopic sample is supplemented with near-IR selected (BzK/DRG) galaxies and submm sources at similar redshifts in the same field, providing a representative collection of relatively massive (M*>1e10 Msun) galaxies at high redshifts. We focus on the redshift range 1.5-2.6, where MIPS is sensitive to the strength of the mid-IR PAH features in the galaxy spectra (rest-frame 5-8.5 micron). We demonstrate, using stacked X-ray data and a subset of galaxies with H-alpha measurements, that L(5-8.5) provides a reliable estimate of L(IR) for most star forming galaxies at z~2. The range of L(IR) in the samples considered extends from ~1e10 to >1e12 Lsun, with a mean of 2e11 Lsun. Using 24 micron observations to infer dust extinction in high redshift galaxies, we find that, as in the local universe, the obscuration (L[IR]/L[1600]) is strongly dependent on L(bol), and ranges in value from <1 to \~1000. However, the obscuration is ~10 times smaller at a given L(bol) at z~2 than at z=0. We show that the values of L(IR) and obscuration inferred from the UV spectral slope beta generally agree well with the values inferred from L(5-8.5) for L(bol)<1e12 Lsun. For galaxies with L(bol)>1e12 Lsun, it is common for UV-based estimates to underpredict L(IR) by a factor of ~10-100. Using the specific SFR as a proxy for cold gas fraction, we find a wide range in the evolutionary state of galaxies at z~2, from those which have just begun to form stars to those which have already accumulated most of their stellar mass and are about to become, or already are, passively-evolving. [Abridged]