Mechanistic target of rapamycin inhibitors: successes and challenges as cancer therapeutics (original) (raw)

Targeting PI3K/Akt/mTOR Signaling in Cancer

Frontiers in oncology, 2014

The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathways are two pathways crucial to many aspects of cell growth and survival, in physiological as well as in pathological conditions (e.g., cancer). Indeed, they are so interconnected that, in a certain sense, they could be regarded as a single, unique pathway. In this paper, after a general overview of the biological significance and the main components of these pathways, we address the present status of the development of specific PI3K, Akt, and mTOR inhibitors, from already registered medicines to novel compounds that are just leaving the laboratory bench.

Recent Development in Targeting PI3K-Akt-mTOR Signaling for Anticancer Therapeutic Strategies

Anti-Cancer Agents in Medicinal Chemistry, 2013

Cancer is a diverse class of diseases which differ widely in their cause and biology. The aberrant behavior of cancer reflects up regulation of certain oncogenic signaling pathways that promote proliferation, inhibit apoptosis, and enable the cancer to spread and evoke angiogenesis. Phosphoinositide-3-kinase(PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway controls various biological processes that are important for normal functioning of the cell via cell cycle progression, survival, migration, transcription, translation and metabolism. However, PI3K signaling pathway is dysregulated almost in all cancers which is due to the amplification and genetic mutation of PI3K gene, encoding catalytic and regulatory subunit of PI3K isoforms. The current review focuses on the structural features of various PI3K isoforms including Akt and mTOR and their inhibition using specific small molecule inhibitors in an attempt to achieve an attractive target for cancer prevention and chemotherapy.

mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?

Frontiers of Medicine

The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibi...

PI 3-kinase, mTOR, protein synthesis and cancer

Trends in Molecular Medicine, 2001

The mTOR kinase is an essential mediator of growth signals that originate from PI3-kinase. Downstream targets of mTOR, p70 S6 kinase and 4E binding protein are important regulators of protein synthesis. Inhibition of mTOR by rapamycin interferes with oncogenic transformation and with tumor development by gain-of-function in PI 3-kinase signaling.

Enhancing Mammalian Target of Rapamycin (mTOR)-Targeted Cancer Therapy by Preventing mTOR/Raptor Inhibition-Initiated, mTOR/Rictor-Independent Akt Activation

Cancer Research, 2008

It has been shown that mammalian target of rapamycin (mTOR) inhibitors activate Akt while inhibiting mTOR signaling. However, the underlying mechanisms and the effect of the Akt activation on mTOR-targeted cancer therapy are unclear. The present work focused on addressing the role of mTOR/rictor in mTOR inhibitor-induced Akt activation and the effect of sustained Akt activation on mTOR-targeted cancer therapy. Thus, we have shown that mTOR inhibitors increase Akt phosphorylation through a mechanism independent of mTOR/rictor because the assembly of mTOR/rictor was inhibited by mTOR inhibitors and the silencing of rictor did not abrogate mTOR inhibitor-induced Akt activation. Moreover, Akt activation during mTOR inhibition is tightly associated with development of cell resistance to mTOR inhibitors. Accordingly, cotargeting mTOR and phosphatidylinositol 3-kinase/Akt signaling prevents mTOR inhibitioninitiated Akt activation and enhances antitumor effects both in cell cultures and in animal xenograft models, suggesting an effective cancer therapeutic strategy. Collectively, we conclude that inhibition of the mTOR/raptor complex initiates Akt activation independent of mTOR/rictor. Consequently, the sustained Akt activation during mTOR inhibition will counteract the anticancer efficacy of the mTOR inhibitors.

Preclinical Characterization of OSI-027, a Potent and Selective Inhibitor of mTORC1 and mTORC2: Distinct from Rapamycin

Molecular Cancer Therapeutics, 2011

The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC 50 values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Ka, PI3Kb, PI3Kg, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients. Mol Cancer Ther; 10(8); 1394-406. Ó2011 AACR.

Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer

Journal of Clinical Investigation, 2008

Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers. Nonstandard abbreviations used: MEF, mouse embryonic fibroblast; mTOR, mammalian target of rapamycin; RTK, receptor tyrosine kinase; TSC2, tuberous sclerosis complex 2.