Improve Speech Enhancement Using Weiner Filtering Improve Speech Enhancement Using Weiner Filtering Improve Speech Enhancement Using Weiner Filtering (original) (raw)

2011, Global Journals Inc. (USA)

Speech enhancement aims to improve speech quality by using various algorithms. It may sound simple, but what is meant by the word quality. It can be at least clarity and intelligibility, pleasantness, or compatibility with some other method in speech processing. Wiener filter are rather simple and workable, but after the estimation of the background noise, one neglects the fact that the signal is actually speech. Furthermore, the phase component of the signal is left untouched. However, this is perhaps not such a bad problem; after all, human ear is not very sensitive to phase changes. The third restriction in spectral subtraction methods is the processing of the speech signal in frames, so the Proceeding from one frame to another must be handled with care to avoid discontinuities. Noise reduction is a key-point of speech enhancement systems in hands-free communications. A number of techniques have been already developed in the frequency domain such as an optimal short-time spectral amplitude estimator proposed by Ephraim and Malah including the estimation of the a priori signal-to-noise ratio. This approach reduces significantly the disturbing noise and provides enhanced speech with colorless residual noise. In this paper, we propose a technique based on a Wiener filtering under uncertainty of signal presence in the noisy observation. Two different estimators of the a priori signal-to-noise ratio are tested and compared. The main interest of this approach comes from its low complexity. In this paper we demonstrate the application of weiner filter for a speech signal using Matlab 7.1 and signal processing toolbox. Abstract-Speech enhancement aims to improve speech quality by using various algorithms. It may sound simple, but what is meant by the word quality. It can be at least clarity and intelligibility, pleasantness, or compatibility with some other method in speech processing. Wiener filter are rather simple and workable, but after the estimation of the background noise, one neglects the fact that the signal is actually speech. Furthermore, the phase component of the signal is left untouched. However, this is perhaps not such a bad problem; after all, human ear is not very sensitive to phase changes. The third restriction in spectral subtraction methods is the processing of the speech signal in frames, so the Proceeding from one frame to another must be handled with care to avoid discontinuities. Noise reduction is a key-point of speech enhancement systems in hands-free communications. A number of techniques have been already developed in the frequency domain such as an optimal short-time spectral amplitude estimator proposed by Ephraim and Malah including the estimation of the a priori signal-to-noise ratio. This approach reduces significantly the disturbing noise and provides enhanced speech with colorless residual noise. In this paper, we propose a technique based on a Wiener filtering under uncertainty of signal presence in the noisy observation. Two different estimators of the a priori signal-to-noise ratio are tested and compared. The main interest of this approach comes from its low complexity. In this paper we demonstrate the application of weiner filter for a speech signal using Matlab 7.1 and signal processing toolbox.