Effect of decreasing of cobalt content in properties for diamond/cemented carbide tools (original) (raw)

2010, International Conference on Advancement of Materials and Nanotechnology, ICAMN 2007

Powder metallurgy plays a role in manufacturing such as automotive and cutting tool applications. Diamond/cemented carbide tools are also made from this technique. Diamond particle and other matrix materials were employed in this study. The purpose is to investigate the physical and mechanical properties of different Cobalt (Co) content samples by using Taguchi's method. The materials used in the experiments were mixed by using a ball-mill machine. The mixed powders were pressed by conventional method. Then the green samples were sintered in a vacuum furnace. After reaching 500°C, the samples were sintered with Argon (Ar) gas. The sintered samples were investigated density by immersion method, porosity by water saturation method, and hardness by Vicker hardness tester. It was found that with 59.5% Co content, plain diamond type, sintering temperature of 950°C, sintering time of 40 minutes, and pressure of 625 MPa, density, porosity, and hardness got the best result in this study. From the Taguchi's analysis, the significant factors effected the performance were composition, sintering temperature, and sintering time. http://proceedings.aip.org/resource/2/apcpcs/1217/1/1\_1