Novel SOD1 mutation p.V31A identified with a slowly progressive form of amyotrophic lateral sclerosis (original) (raw)

Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis

Proceedings of the National Academy of Sciences, 2010

Amyotrophic lateral sclerosis (ALS) is a disorder characterized by the death of both upper and lower motor neurons and by 3-to 5-yr median survival postdiagnosis. The only US Food and Drug Administration-approved drug for the treatment of ALS, Riluzole, has at best, moderate effect on patient survival and quality of life; therefore innovative approaches are needed to combat neurodegenerative disease. Some familial forms of ALS (fALS) have been linked to mutations in the Cu/Zn superoxide dismutase (SOD1). The dominant inheritance of mutant SOD1 and lack of symptoms in knockout mice suggest a "gain of toxic function" as opposed to a loss of function. A prevailing hypothesis for the mechanism of the toxicity of fALS-SOD1 variants, or the gain of toxic function, involves dimer destabilization and dissociation as an early step in SOD1 aggregation. Therefore, stabilizing the SOD1 dimer, thus preventing aggregation, is a potential therapeutic strategy. Here, we report a strategy in which we chemically cross-link the SOD1 dimer using two adjacent cysteine residues on each respective monomer (Cys111). Stabilization, measured as an increase in melting temperature, of ∼20°C and ∼45°C was observed for two mutants, G93A and G85R, respectively. This stabilization is the largest for SOD1, and to the best of our knowledge, for any disease-related protein. In addition, chemical cross-linking conferred activity upon G85R, an otherwise inactive mutant. These results demonstrate that targeting these cysteine residues is an important new strategy for development of ALS therapies. mass spectrometry | thiol-disulfide I nnovative approaches are needed to combat neurodegenerative disease, among the most serious of which is amyotrophic lateral sclerosis (ALS), a disorder characterized by the death of both upper and lower motor neurons and by 3-to-5-yr median survival postdiagnosis. The only US Food and Drug Administrationapproved drug for the treatment of ALS, Riluzole, has at best, moderate effect on patient survival and quality of life (1-3). Although the causes of sporadic neurodegenerative diseases remain a mystery, mutations causing familial forms of many of these diseases (e.g., Alzheimer's, Parkinson, and ALS) are known. For example, mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) are responsible for ∼20% of the familial ALS cases (fALS) and 2% of all ALS (4, 5). Two such mutations are G93A, which maintains wild-type-like enzymatic activity, and the metal-deficient G85R, which is essentially inactive. Posttranslational modifications of proteins involved in familial diseases have been invoked in the etiology of the corresponding sporadic diseases, for example, alpha-synuclein (6) and Parkin (7) modification in Parkinson, Abeta (8) and tau (9) modification in Alzheimer's, and TDP43 (10) and SOD1 (11-14) modification in ALS. The hope, therefore, is that strategies for treating familial diseases may translate to at least a subset of sporadic diseases. Both dominant inheritance of mutant SOD1 (15) and lack of symptoms in knockout mice (16) suggest a "gain of toxic function" as opposed to a loss of function (16-22). Aggregation propensity and loss of stability of SOD1 are synergistic risk fac

An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1

Proceedings of the National Academy of Sciences, 2012

Recent studies suggest that Cu/Zn superoxide dismutase (SOD1) could be pathogenic in both familial and sporadic amyotrophic lateral sclerosis (ALS) through either inheritable or nonheritable modifications. The presence of a misfolded WT SOD1 in patients with sporadic ALS, along with the recently reported evidence that reducing SOD1 levels in astrocytes derived from sporadic patients inhibits astrocyte-mediated toxicity on motor neurons, suggest that WT SOD1 may acquire toxic properties similar to familial ALSlinked mutant SOD1, perhaps through posttranslational modifications. Using patients' lymphoblasts, we show here that indeed WT SOD1 is modified posttranslationally in sporadic ALS and is iperoxidized (i.e., above baseline oxidation levels) in a subset of patients with bulbar onset. Derivatization analysis of oxidized carbonyl compounds performed on immunoprecipitated SOD1 identified an iper-oxidized SOD1 that recapitulates mutant SOD1-like properties and damages mitochondria by forming a toxic complex with mitochondrial Bcl-2. This study conclusively demonstrates the existence of an iper-oxidized SOD1 with toxic properties in patientderived cells and identifies a common SOD1-dependent toxicity between mutant SOD1-linked familial ALS and a subset of sporadic ALS, providing an opportunity to develop biomarkers to subclassify ALS and devise SOD1-based therapies that go beyond the small group of patients with mutant SOD1.

A Novel Variant in Superoxide Dismutase 1 Gene (p.V119M) in Als Patients with Pure Lower Motor Neuron Presentation

Genes

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal disorder characterized by degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord. Most cases of ALS appear sporadically, but 5–10% of patients have a family history of disease. Mutations in the superoxide dismutase 1 gene (SOD1) have been found in 12–23% of familial cases and in 1–2% of sporadic cases. Currently, more than 180 different SOD1 gene variants have been identified in ALS patients. Here, we describe two apparently sporadic ALS patients carrying the same SOD1 c.355G>A variant, leading to the p.V119M substitution, not previously described. Both the patients showed pure lower motor neuron phenotype. The former presented with the flail leg syndrome, a rare ALS variant, characterized by progressive distal onset weakness and atrophy of lower limbs, slow progression and better survival than typical ALS. The latter exhibited rapidly progressive weakness of upper and lower limbs, neither u...

Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS

Human Molecular Genetics, 2012

A reason for screening amyotrophic lateral sclerosis (ALS) patients for mutations in the superoxide dismutase-1 (SOD1) gene is the opportunity to find novel mutations with properties that can give information on pathogenesis. A novel c.352C>G (L117V) SOD1 mutation was found in two Syrian ALS families living in Europe. The disease showed unusually low penetrance and slow progression. In erythrocytes, the total SOD1 activity, as well as specific activity of the mutant protein, was equal in carriers of the mutation and family controls lacking SOD1 mutations. The structural stabilities of the L117V mutant and wild-type SOD1 under denaturing conditions were likewise equal, but considerably lower than that of murine SOD1. As analyzed with an ELISA specific for misfolded SOD1 species, no differences were found in the content of misfolded SOD1 protein between extracts of fibroblasts from wild-type controls and from an L117V patient. In contrast, elevated levels of misfolded SOD1 protein were found in fibroblasts from ALS patients carrying seven other mutations in the SOD1 gene. We conclude that mutations in SOD1 that result in a fully stable protein are associated with low disease penetrance for ALS and may be found in cases of apparently sporadic ALS. Wild-type human SOD1 is moderately stable, and was found here to be within the stability range of ALS-causing SOD1 variants, lending support to the hypothesis that wild-type SOD1 could be more generally involved in ALS pathogenesis.

Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity

Proceedings of the National Academy of Sciences, 1994

Familial amyotrophic lateral sclerosis (FALS) has been linked to mutations in the homodimeric enzyme Cu/Zn superoxide dismutase 1 (SOD1). Assay by transient expression in primate cells of six FALS mutant enzymes revealed a continuum of enzymatic activity bounded by the enzyme carrying the mutation Gly-85 -Arg, which was inactive, and mutant enzyme G37R carrying the Gly-37 -> Arg change, which retained full specific activity but displayed a 2-fold reduction in polypeptide stability. The G37R mutant displayed similar properties in transformed lymphocytes from an individual heterozygous for the G37R and wild-type SOD1 genes; heterodimeric enzymes composed of mutant and wildtype subunits were detected, but there was no measurable diminution in the stability and activity of the wild-type subunits. Thus, for mutants such as G37R, either surprisingly modest losses in activity (involving only the mutant subunit) can yield motor neuron death, or alternatively, mutant SOD1 may acquire properties that inWure motor neurons by one or more mechanisms unrelated to the metabolism of oxygen radicals.

Superoxide dismutase gene mutations in Italian patients with familial and sporadic amyotrophic lateral sclerosis: identification of three novel missense mutations

Neuromuscular Disorders, 2001

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons. The majority of the patients are sporadic cases (SALS), while 5±10% of the patients have a family history of ALS (familial ALS or FALS). Mutations in the gene coding for cytoplasmic Cu/Zn superoxide dismutase (SOD1) have been identi®ed in about 20% of FALS cases. We found SOD1-gene mutations in ®ve of 34 unrelated FALS, and in two of 44 SALS patients. Three FALS patients carried the previously described A4V (two cases) and L84F mutations (one case), while two FALS patients carried new missense mutations: a G12R substitution in exon 1, and a F45C substitution in exon 2, respectively. The newly identi®ed mutations were both associated with a slowly progressive disease course. Two SALS patients carried the homozygous D90A and the heterozygous I113T mutation, respectively. In addition, in one SALS patient we identi®ed an A95T amino acid substitution, that is apparently a non-pathogenic SOD1 variant. Our study increases the number of ALS-associated SOD1 gene mutations. q

Mutation of SOD1 in ALS: a gain of a loss of function

Human Molecular Genetics, 2007

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by motoneuron loss. Some familial cases (fALS) are linked to mutations of superoxide dismutase type-1 (SOD1), an antioxidant enzyme whose activity is preserved in most mutant forms. Owing to the similarities in sporadic and fALS forms, mutant SOD1 animal and cellular models are a useful tool to study the disease. In transgenic mice expressing either wild-type (wt) human SOD1 or mutant G93A-SOD1, we found that wtSOD1 was present in cytoplasm and in nuclei of motoneurons, whereas mutant SOD1 was mainly cytoplasmic. Similar results were obtained in immortalized motoneurons (NSC34 cells) expressing either wtSOD1 or G93A-SOD1. Analyzing the proteasome activity, responsible for misfolded protein clearance, in the two subcellular compartments, we found proteasome impairment only in the cytoplasm. The effect of G93A-SOD1 exclusion from nuclei was then analyzed after oxidative stress. Cells expressing G93A-SOD1 showed a higher DNA damage compared with those expressing wtSOD1, possibly because of a loss of nuclear protection. The toxicity of mutant SOD1 might, therefore, arise from an initial misfolding (gain of function) reducing nuclear protection from the active enzyme (loss of function in the nuclei), a process that may be involved in ALS pathogenesis.

Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis

Annals of Neurology, 2009

Objective: In familial amyotrophic lateral sclerosis (fALS) harboring superoxide dismutase (SOD1) mutations (fALS1), SOD1 toxicity has been linked to its propensity to misfold and aggregate. It has recently been proposed that misfolded SOD1 may be causative of all types of ALS, including sporadic cases (sALS). In the present study, we have used a specific antibody to test for the presence of monomer/misfolded SOD1 in sALS. Methods: Sections from lumbar spinal cords of 5 fALS1 cases, 13 sALS cases, and 1 non-SOD1 fALS case were labeled immunocytochemically using SOD1-exposed-dimer-interface (SEDI) antibody, which we have previously validated as being specific for pathological monomer/misfolded forms of SOD1. Results: Monomer/misfolded SOD1 was detected with SEDI antibody in all 5 of the fALS1 cases, localizing predominantly to hyaline conglomerate inclusions, a specific pathological feature of fALS1. In contrast, monomer/misfolded SOD1 was not detected in any of the 13 sALS cases or in the non-SOD1 fALS cases. These results were confirmed by immunoprecipitation. Interpretation: Although SEDI antibody does not necessarily label all misfolded forms of SOD1, these findings show a distinct difference between fALS1 and sALS, and do not support that monomer/misfolded SOD1 is a common disease entity linking all types of ALS. This is important to our understanding of ALS disease pathogenesis and to considerations of the applicability of using therapeutics that target misfolded SOD1 to non-SOD1-related cases.

Amyotrophic lateral sclerosis: a new missense mutation in the SOD1 gene

Neurobiology of Aging, 2013

Copper-zinc superoxide dismutase-1 (SOD1) is the second most common mutated gene in amyotrophic lateral sclerosis (ALS). To date more than 150 missense mutations of SOD1 have been reported. The objective of this study was to describe a novel SOD1 mutation and its phenotypic expression. We describe a 74-year-old Caucasian man who began to complain of progressive weakness and atrophy of the right hand and over 10 months developed a severe tetraparesis, with atrophies of upper and lower limbs and neck muscles, dysphagia, and dyspnea that led to percutaneous endoscopic gastrostomy and tracheotomy. A diagnosis of ALS was made. Genetic analysis identified a heterozygous mutation in exon 4 of SOD1 that results in the amino acid substitution from arginine to cysteine at position 115 (p.R115C). We identified a novel pathogenic SOD1 mutation in a patient with a very rapid disease progression and aggressive phenotype providing additional information on the wide range of SOD1 mutations in apparently sporadic ALS and confirming the possibility of a strong genotype-phenotype correlation for distinct SOD1 mutations.

SOD1, from Bench to Bed: New Role for the Oldest Protein Implicated in ALS

Update on Amyotrophic Lateral Sclerosis, 2016

In 1993, the first superoxide dismutase 1 (SOD1) mutation in amyotrophic lateral sclerosis (ALS) patients has been described by Rosen et al. successively, the scientific literature focused on the role of SOD1 in the pathogenesis of ALS. While a clear genetic scenario has been presented, heterogeneous data have been formulated regarding transcriptional and post-transcriptional regulation of SOD1 so far. In particular, the dilemma concerns the SOD1 protein expression, in the direction of a loss of function of the wild-type SOD1 or a toxic gain of function of the altered SOD1, both in FALS (mutant-SOD1) and in SALS (misfolded-SOD1). In this chapter, we focus on the evolution of scientific knowledge about SOD1 protein in ALS patients, reviewing in detail the results obtained using peripheral blood cells in this research field. To conclude, we propose a brief summary of the described clinical correlation and discuss the possible SOD1 implication as a biomarker of ALS.