Modulation of Inositol 1,4,5-Trisphosphate Binding to the Recombinant Ligand-binding Site of the Type-1 Inositol 1,4,5-Trisphosphate Receptor by Ca2+ and Calmodulin (original) (raw)

Molecular properties of inositol 1,4,5-trisphosphate receptors

Cell Calcium, 1999

The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge about the structure, regulation and function of IP3 receptors. For example, several Ca(2+)-binding sites and a Ca(2+)-calmodulin-binding domain have been mapped within the type I IP3 receptor, and studies on purified cerebellar IP3 receptors propose a second Ca(2+)-independent calmodulin-binding domain. In addition, minimal requirements for the binding of immunophilins and the formation of tetramers have been identified. Overexpression of IP3 receptors has provided further clues to the regulation of individual IP3 receptor isoforms present within cells, and the role that they play in the generation of IP3-dependent Ca2+ signals. Inhibition of IP3 receptor function and expression, and analysis of mutant IP3 receptors, suggests that IP3 receptors are involved in such diverse cellular processes as proliferation and apoptosis and are thus, necessary for normal development. Our understanding of the complex spatial and temporal nature of cytosolic Ca2+ increases and the role that these Ca2+ signals play in cell function depend upon our knowledge of the structure and the regulation of IP3 receptors. This review focuses on the molecular properties of these ubiquitous intracellular Ca2+ channels.

Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors

Biochemical Journal, 1997

To elucidate the functional difference between type 1 and type 3 Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 respectively] we studied the effect of Ca2+ on the ligand-binding properties of both Ins(1,4,5)P3R types. We expressed full-length human Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 from cDNA species in insect ovary Sf9 cells, and the membrane fractions were used for Ins(1,4,5)P3-binding assays. The binding of Ins(1,4,5)P3 to Ins(1,4,5)P3R1 and Ins(1,4,5)P3R3 was differentially regulated by Ca2+. With increasing concentrations of free Ca2+ ([Ca2+]), Ins(1,4,5)P3 binding to Ins(1,4,5)P3R1 decreased, whereas that to Ins(1,4,5)P3R3 increased. Alteration of Ins(1,4,5)P3 binding to Ins(1,4,5)P3R1 was observed at [Ca2+] ranging from less than 1 nM to more than 10 μM. The EC50 of Ins(1,4,5)P3 binding was 100 nM Ca2+ for Ins(1,4,5)P3R1. In contrast, Ins(1,4,5)P3 binding to Ins(1,4,5)P3R3 was changed at high [Ca2+] with an EC50 value of 872 nM, and steeply between 100 nM and 10 μM....

Calmodulin inhibits inositol 1,4,5‐trisphosphate‐induced calcium release through the purified and reconstituted inositol 1,4,5‐trisphosphate receptor type 1

FEBS Letters, 1999

Our previous studies have demonstrated that calmodulin binds to IP3R type 1 (IP3R1) in a Ca2+ dependent manner, which suggests that calmodulin regulates the IP3R1 channel. In the present study, we investigated real‐time kinetics of interactions between calmodulin and IP3R1 as well as effects of calmodulin on IP3‐induced Ca2+ release by purified and reconstituted IP3R1. Kinetic analysis revealed that calmodulin binds to IP3R1 in a Ca2+ dependent manner and that both association and dissociation phase consist of two components with time constants of k a=4.46×102 and >104 M−1 s−1, k d=1.44×10−2 and 1.17×10−1 s−1. The apparent dissociation constant was calculated to be 27.3 μM. The IP3‐induced Ca2+ release through the purified and reconstituted IP3R1 was inhibited by Ca2+/calmodulin, in a dose dependent manner. We interpret our findings to mean that calmodulin binds to IP3R1 in a Ca2+ dependent manner to exert inhibitory effect on IP3R channel activity. This event may be one of the m...

Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: Redistribution of calmodulin as a possible means of regulating Ca2+ mobilization

Proceedings of the National Academy of Sciences, 1997

The interactions between calmodulin, inositol 1,4,5-trisphosphate (InsP3), and pure cerebellar InsP3 receptors were characterized by using a scintillation proximity assay. In the absence of Ca2+, 125I-labeled calmodulin reversibly bound to multiple sites on InsP3 receptors and Ca2+ increased the binding by 190% +/- 10%; the half-maximal effect occurred when the Ca2+ concentration was 184 +/- 14 nM. In the absence of Ca2+, calmodulin caused a reversible, concentration-dependent (IC50 = 3.1 +/- 0.2 microM) inhibition of [3H]InsP3 binding by decreasing the affinity of the receptor for InsP3. This effect was similar at all Ca2+ concentrations, indicating that the site through which calmodulin inhibits InsP3 binding has similar affinities for calmodulin and Ca2+-calmodulin. Calmodulin (10 microM) inhibited the Ca2+ release from cerebellar microsomes evoked by submaximal, but not by maximal, concentrations of InsP3. Tonic inhibition of InsP3 receptors by the high concentrations of calmodulin within cerebellar Purkinje cells may account for their relative insensitivity to InsP3 and limit spontaneous activation of InsP3 receptors in the dendritic spines. Inhibition of InsP3 receptors by calmodulin at all cytosolic Ca2+ concentrations, together with the known redistribution of neuronal calmodulin evoked by protein kinases and Ca2+, suggests that calmodulin may also allow both feedback control of InsP3 receptors and integration of inputs from other signaling pathways.