Bifurcations and chaos in large Prandtl-number Rayleigh-B'{e}nard Convection (original) (raw)

A low-dimensional model of large Prandtl-number ($P$) Rayleigh B\'{e}nard convection is constructed using some of the important modes of pseudospectral direct numerical simulations. A detailed bifurcation analysis of the low-dimensional model for P=6.8P=6.8P=6.8 and aspect ratio of 2sqrt22\sqrt{2}2sqrt2 reveals a rich instability and chaos picture: steady rolls, time-periodicity, quasiperiodicity, phase locking, chaos, and crisis. Bifurcation analysis also reveals multiple co-existing attractors, and a window with time-periodicity after chaos. The results of the low-dimensional model matches quite closely with some of the past simulations and experimental results where they observe chaos in RBC through quasiperiodicity and phase locking.