Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore (original) (raw)

In flotation, the froth characteristics strongly influence the separation process as they are linked to water recovery, bubble size, entrainment of gangue particles, flotation rate constants and finally grade and recovery. In the case of a high-grade apatite ore with a high mass pull in lab-scale flotation, significant changes in pulp and froth properties occur, such that the froth stability decreases with increasing flotation time. These changes can be related to different particle and reagent concentrations. We describe the change of entrainment in a rich apatite ore batch flotation with time more precisely by measuring froth properties using a Dynamic Froth Analyzer (DFA). It is concluded that the degree of entrainment is not only dependent on particle size but also the pulp density due to its effect on particle settling and also froth properties in varying resistance to drainage. Through a combination of timeresolved dynamic froth analysis and automated mineralogy, we identify the dynamic effects governing in the froth and compare the entrainment results with existing models. Furthermore, our analyses offer novel support for the extension of the common understanding of the entrainment phenomena.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact