Revisiting the IGF-1R as a breast cancer target (original) (raw)

The type I insulin-like growth factor-1 receptor is a well-described target in breast cancer and multiple clinical trials examining insulin-like growth factor-1 receptor have been completed. Unfortunately, monoclonal antibodies and tyrosine kinase inhibitors targeting insulin-like growth factor-1 receptor failed in phase III breast clinical trials for several reasons. First, insulin-like growth factor-1 receptor antibody therapy resulted in hyperglycemia and metabolic syndrome most likely due to disruption of insulin-like growth factor-1 homeostasis and subsequent growth hormone elevation. Growth hormone elevation induces insulin resistance, hence a subsequent elevation of insulin and the potential for activation of insulin receptor. Second, the insulin-like growth factor-1 receptor and insulin receptor are highly homologous in amino acid sequence, structure, and function. These two receptors bind insulin, insulin-like growth factor-1 and insulin-like growth factor-2, to regulate glucose uptake and other cellular functions. Hybrid receptors composed of one chain of insulin-like growth factor-1 receptor and insulin receptor also participate in signaling. Third, since all the monoclonal antibodies were specific for insulin-like growth factor-1 receptor, any pathophysiologic role for insulin receptor was not inhibited. While the insulin-like growth factor-1 receptor tyrosine kinase inhibitors effectively inhibited both insulin-like growth factor-1 receptor and insulin receptor, these drugs are not being further developed likely due to their metabolic toxicities. Insulin-like growth factor-1/2 neutralizing antibodies are still being studied in early phase clinical trials. Perhaps a more comprehensive strategy of targeting the insulin-like growth factor-1 receptor network would be successful. For example, targeting receptor, ligand and downstream signaling molecules such as phosphatidylinositol 3′-kinase or particularly the insulin receptor substrate adapter proteins might result in a complete blockade of insulin-like growth factor-1 receptor/insulin receptor biological functions.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.