Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion (original) (raw)

Microalgae are sunlight-driven miniature factories that convert atmospheric CO 2 to polar and neutral lipids which after esterification can be utilized as an alternative source of petroleum. Further, other metabolic products such as bioethanol and biohydrogen produced by algal cells are also being considered for the same purpose. Microaglae are more efficient than the conventional oleaginous plants in capturing solar energy as they have simpler cellular organization and high capacity to produce lipids even under nutritionally challenged and high salt concentrations. Commercially, microalgae are cultivated either in open pond systems or in closed photobioreactors. The photobioreactor systems including tubular bioreactors, plate reactors and bubble column reactors have their own advantages as they provide sterile conditions for growing algal biomass. Besides, other culture conditions such as light intensity, CO 2 concentration, nutritional balance, etc, in closed reactors remain controlled. On the other hand, though the open ponds provide a cost-effective option to utilize natural light facility for algal cells, the tough maintenance of optimal and stable growth conditions makes it difficult to manage the economy of the process. Further, these systems are much more susceptible to contamination with unwanted microalgae and fungi, bacteria and protozoa that feed on algae. Recently, some work has been done to improve lipid production from algal biomass by implementing in silico and in vitro biochemical, genetic and metabolic engineering approaches. This article represents a comprehensive discussion about the potential of microalgae for the production of valuable lipid compounds that can be further used for biodiesel production.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact