Enumeration of gut-homing β7-positive, pathogen-specific antibody secreting cells in whole blood in enterotoxigenic Escherichia coli and Vibrio cholerae- infected patients using an ELISPOT technique (original) (raw)
Related papers
The Journal of Infectious Diseases, 1998
Enteric infections induce a response of circulating pathogen-specific antibody-secreting cells (ASC). The expression of homing receptors (HRs) on these cells was studied in patients with diarrhea caused by Vibrio cholerae in Bangladesh, an area in which cholera is endemic. The gut HR, a 4 b 7 , was expressed by Ç80% of the ASC, indicating mucosal homing of these cells. However, the peripheral lymph node HR, L-selectin, was also expressed by Ç80% of the ASC specific to either cholera toxin or O antigen. In earlier findings after oral immunization in nonendemic areas, a 4 b 7 has been expressed by Ç100% and L-selectin by Ç50% of the ASC. In comparison, the present data speak for a more systemic targeting of the immune response associated with long-lasting immunity in an endemic area. The results thus provide insight for the continued development and evaluation of vaccines.
Infection and Immunity, 2003
Gut-derived lymphocytes transiently migrate through the peripheral circulation before homing back to mucosal sites and can be detected using an ELISPOT-based antibody secreting cell (ASC) assay. Alternatively, transiently circulating lymphocytes may be cultured in vitro, and culture supernatants may be assayed for antigen-specific responses (antibody in lymphocyte supernatant [ALS] assay). The ALS assay has not been validated extensively in natural mucosal infection, nor has the ALS response been compared to the ASC assay and other cholera-specific immunological responses. Accordingly, we examined immune responses in 30 adult patients with acute cholera in Bangladesh, compared with 10 healthy controls, measuring ALS-immunoglobulin A (IgA), ASC-IgA, and serum and fecal IgA responses to two potent Vibrio cholerae immunogens, the nontoxic B subunit of cholera toxin (CtxB) and lipopolysaccharide (LPS) and a weaker V. cholerae immunogen, the mannose-sensitive hemagglutinin (MSHA). We found significant increases of anti-CtxB, anti-LPS, and anti-MSHA IgA in supernatants of lymphocytes cultured 7 days after onset of cholera using the ALS assay. We found that ALS and ASC responses correlated extremely well; both had comparable sensitivities as the vibriocidal responses, and both procedures were more sensitive than fecal IgA measurements. An advantage of the ALS assay for studying mucosal immune responses is the ability to freeze antibodies in supernatants for subsequent evaluation; like the ASC assay, the ALS assay can distinguish recent from remote mucosal infection, a distinction that may be difficult to make in endemic settings using other procedures.
Microbes and infection, 2017
Antibody secreting cells (ASCs) generate antibodies in an antigen-specific manner as part of the adaptive immune response to infections, and these cells increase their surface expression of HLA-DR. We have studied this parameter (HLA-DR+ ASC) in patients with recent diarrheal infection using immuno-magnetic cell sorting and an enzyme linked immunospot (ELISPOT) technique that requires only one milliliter of blood. We validated this approach in adult patients with cholera (n = 15) or ETEC diarrhea (n = 30) on days 2, 7 and 30 after showing clinical symptom at the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) hospital in Dhaka, and we compared responses to age-matched healthy controls (n = 7). We found that HLA-DR+ ASC (DR+ASC) responses specific both for T cell-dependent (cholera toxin B subunit), and T cell-independent (lipopolysaccharide) antigens were elevated at day 7 after showing clinical cholera symptom. Similarly, DR+ASCs were elevated against bot...
Mucosal Immunologic Responses in Cholera Patients in Bangladesh
Vibrio cholerae O1 causes dehydrating diarrhea with a high mortality rate if untreated. The infection also elicits long-term protective immunity. Since V. cholerae is noninvasive, mucosal immunity is likely important for protection. In this study, we compared humoral immune responses in the duodenal mucosa and blood of cholera patients at different time points after the onset of disease and compared them with those of healthy controls (HCs). Immune responses to lipopolysaccharide (LPS) and the recombinant cholera toxin B subunit (rCTB) were assessed by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT) assay. Significant increases in V. cholerae LPS-specific IgA and IgG antibody levels were seen in duodenal extracts on day 30, but the levels decreased to baseline by day 180; plasma V. cholerae LPS-specific IgA levels remained elevated longer. Levels of mucosal CTB antibodies also peaked on day 30, but the increase reached statistical significance only for IgG. A significant correlation was found between the CTB antibodysecreting cell (ASC) response in the circulatory system on day 7 and subsequent CTB-specific IgA levels in duodenal extracts on day 30 and the numbers of CTB-specific IgA ASCs in duodenal tissues on day 180. The proportion (0.07%) of mucosal V. cholerae LPS IgA ASCs peaked on day 30 and remained elevated through day 180 compared to that of HCs (P ؍ 0.03). These results suggest that protective immunity against V. cholerae is not likely mediated by the constitutive secretion of antibodies at the mucosal surface; our results are consistent with those of other studies that suggest instead that anamnestic immune responses of mucosal lymphocytes may play a major role in protection against cholera.
Environmental enteropathy (EE) is a poorly understood condition that refers to chronic alterations in intestinal permeability, absorption, and inflammation, which mainly affects young children in resource-limited settings. Recently, EE has been linked to suboptimal oral vaccine responses in children, although immunological mechanisms are poorly defined. The objective of this study was to determine host factors associated with immune responses to an oral cholera vaccine (OCV). We measured antibody and memory T cell immune responses to cholera antigens, micronutrient markers in blood, and EE markers in blood and stool from 40 Bangladeshi children aged 3–14 years who received two doses of OCV given 14 days apart. EE markers included stool myeloperoxidase (MPO) and alpha anti-trypsin (AAT), and plasma endotoxin core antibody (EndoCab), intestinal fatty acid binding protein (i-FABP), and soluble CD14 (sCD14). We used multiple linear regression analysis with LASSO regularization to identify host factors, including EE markers, micronu-trient (nutritional) status, age, and HAZ score, predictive for each response of interest. We found stool MPO to be positively associated with IgG antibody responses to the B subunit of cholera toxin (P = 0.03) and IgA responses to LPS (P = 0.02); plasma sCD14 to be positively associated with LPS IgG responses (P = 0.07); plasma i-FABP to be positively associated with LPS IgG responses (P = 0.01) and with memory T cell responses specific to PLOS Neglected Tropical Diseases |
Assessment of disease specific immune responses in enteric diseases using dried blood spot (DBS
PloS One, 2019
Background Blood collection, transportation and storage remain a problem in countries where infrastructure, laboratory facilities and skilled manpower are scarce. This limits evaluation of immune responses in natural infections and vaccination in field studies. We developed methods to measure antigen specific antibody responses using dried blood spot (DBS) in cholera, ETEC and typhoid fever patients as well as recipients of oral cholera vaccine (OCV). Methodology/Principle findings We processed heparinized blood for preparing DBS and plasma specimens from patients with, cholera, ETEC and typhoid as well as OCV recipients. We optimized the conventional vibriocidal method to measure vibriocidal antibody response in DBS eluates. We measured responses in DBS samples and plasma (range of titer of 5 to 10240). Vibriocidal titer showed strong agreement between DBS eluates and plasma in cholera patients (ICC = 0.9) and in OCV recipients (ICC = 0.8) using the Bland-Altman analysis and a positive correlation was seen (r = 0.7, p = 0.02 and r = 0.6, p = 0.006, respectively). We observed a strong agreement of lipopolysaccharide (LPS) and cholera toxin B (CTB)-specific antibody responses between DBS eluates and plasma in cholera patients and OCV recipients. We also found agreement of heat labile toxin B (LTB) and membrane protein (MP)-specific antibody responses in DBS eluates and plasma specimen of ETEC and typhoid patients respectively. Conclusion Our results demonstrate that dried blood specimens can be used as an alternate method for preservation of samples to measure antibody responses in enteric diseases and vaccine trials and can be applied to assessment of responses in humanitarian crisis and other adverse field settings.
Infection and Immunity, 2010
Vibrio cholerae O1 and enterotoxigenic Escherichia coli (ETEC) are major bacterial pathogens that cause dehydrating disease requiring hospitalization of children and adults. The cholera toxin (CT) produced by V. cholerae O1 and the heat-labile toxin (LT) and/or heat-stable toxin (ST) of ETEC are responsible for secretory diarrhea. We have observed that about 13% of hospitalized diarrheal patients are concomitantly infected with V. cholerae O1 and ETEC. In order to understand the outcome of such dual infections on the clinical and immunological responses in cholera patients, we studied patients infected with V. cholerae O1 (group VC; n ؍ 25), those infected with both V. cholerae O1 and ETEC (group VCET; n ؍ 25), and those infected with ETEC only (group ET; n ؍ 25). The VCET group showed more severe dehydration and had a higher intake of intravenous fluid and more vomiting than the ETEC group (P ؍ 0.01 to 0.003). The VCET patients showed higher vibriocidal responses and increased antibody titers to cholera toxin and lipopolysaccharide (LPS) in plasma than did the V. cholerae O1 patients (P ؍ 0.02 to <0.001). All responses in the V. cholerae O1 and in the VCET groups were more robust than those seen in the group infected with ETEC only (P ؍ 0.01 to <0.001). We thus show that concomitant colonization with ETEC induces immune responses to V. cholerae antigens that are more robust than those seen with V. cholerae O1 infection alone. It is possible that LT or other factors expressed by ETEC may play a role as a mucosal adjuvant in enhancing the immune responses to V. cholerae O1.
Clinical and Vaccine Immunology, 2013
ABSTRACTInfection withVibrio choleraeand oral cholera vaccines (OCVs) induce transient circulating plasmablast responses that peak within approximately 7 days after infection or vaccination. We previously demonstrated that plasmablast responses strongly correlate with subsequent levels ofV. cholerae-specific duodenal antibodies up to 6 months afterV. choleraeinfection. Hence, plasmablast responses provide an early window into the immunologic memory at the mucosal surface. In this study, we characterized plasmablast responses followingV. choleraeinfection using a flow cytometrically defined population and comparedV. cholerae-specific responses in adult patients withV. choleraeO1 infection and vaccinees who received the OCV Dukoral (Crucell Vaccines Canada). Among flow cytometrically sorted populations of gut-homing plasmablasts, almost 50% of the cells recognized either cholera toxin B subunit (CtxB) orV. choleraeO1 lipopolysaccharide (LPS). Using a traditional enzyme-linked immunoso...
Infection and immunity, 1999
Immune responses against enterotoxigenic Escherichia coli (ETEC) were examined in Bangladeshi adults with naturally acquired disease and compared to responses in age-matched Bangladeshi volunteers who had been orally immunized with a vaccine consisting of inactivated ETEC bacteria expressing different colonization factor antigens (CFs) and the B subunit of cholera toxin. B-cell responses in duodenal biopsy samples, feces, intestinal washings, and blood were determined. Because most of the patients included in the study were infected with ETEC expressing CS5, immune responses to this CF were studied most extensively. Vaccinees and patients had comparable B-cell responses against this antigen in the duodenum: the median numbers of antibody-secreting cells (ASC) were 3,300 immunoglobulin A (IgA) ASC/10(7) mononuclear cells (MNC) in the patient group (n = 8) and 1,200 IgA ASC/10(7) MNC in the vaccinees (n = 13) (not a significant difference). Similarly, no statistically significant diff...
Background: Mucosal Associated Invariant T (MAIT) cells are innate-like T cells found in abundance in the intestinal mucosa, and are thought to play a role in bridging the innate-adaptive interface. Methods: We measured MAIT cell frequencies and antibody responses in blood from patients presenting with cultureconfirmed severe cholera to a hospital in Dhaka, Bangladesh at days 2, 7, 30, and 90 of illness. Results: We found that MAIT (CD3 + CD4 2 CD161 hi Va7.2 +) cells were maximally activated at day 7 after onset of cholera. In adult patients, MAIT frequencies did not change over time, whereas in child patients, MAITs were significantly decreased at day 7, and this decrease persisted to day 90. Fold changes in MAIT frequency correlated with increases in LPS IgA and IgG, but not LPS IgM nor antibody responses to cholera toxin B subunit. Conclusions: In the acute phase of cholera, MAIT cells are activated, depleted from the periphery, and as part of the innate response against V. cholerae infection, are possibly involved in mechanisms underlying class switching of antibody responses to T cell-independent antigens.