Deformation and failure mechanisms of electrochemically lithiated silicon thin films (original) (raw)
Related papers
Review and Stress Analysis on the Lithiation Onset of Amorphous Silicon Films
Batteries
This work aims to review and understand the behavior of the electrochemical lithiation onset of amorphous silicon (a-Si) films as electrochemically active material for new generation lithium-ion batteries. The article includes (i) a review on the lithiation onset of silicon films and (ii) a mechanochemical model with numerical results on the depth-resolved mechanical stress during the lithiation onset of silicon films. Recent experimental studies have revealed that the electrochemical lithiation onset of a-Si films involves the formation of a Li-poor phase (Li0.3Si alloy) and the propagation of a reaction front in the films. The literature review performed reveals peculiarities in the lithiation onset of a-Si films, such as (i) the build-up of the highest mechanical stress (up to 1.2 GPa) during lithiation, (ii) a linear increase in the mechanical stress with lithiation which mimics the characteristics of linear elastic deformation, (iii) only a minute volume increase during Li inco...
2013
ABSTRACT: Silicon can host a large amount of lithium, making it a promising electrode for high-capacity lithium-ion batteries. Recent experiments indicate that silicon experiences large plastic deformation upon Li absorption, which can significantly decrease the stresses induced by lithiation and thus mitigate fracture failure of electrodes. These issues become especially relevant in nanostructured electrodes with confined geometries. On the basis of first-principles calculations, we present a study of the microscopic deformation mechanism of lithiated silicon at relatively low Li concentration, which captures the onset of plasticity induced by lithiation. We find that lithium insertion leads to breaking of Si Si bonds and formation of weaker bonds between neighboring Si and Li atoms, which results in a decrease in Young’s modulus, a reduction in strength, and a brittle-to-ductile transition with increasing Li concentration. The microscopic mechanism of large plastic deformation is ...
Physical chemistry chemical physics : PCCP, 2015
Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous LixSi alloy during lithiation, which propagates with a velocity that is orientation dependent; the resulting anisotropic swelling generates substantial strain concentrations that initiate cracks even in nanostructured Si. Here we describe a novel strategy to mitigate lithiation-induced fracture by using pristine c-Si structures with engineered anisometric morphologies that are deliberately designed to counteract the anisotropy in the crystalline/amorphous interface velocity. This produces a much more uniform volume expansion, significantly reducing strain concentration. Based on a new, validated methodology that improves previous models of ani...
High damage tolerance of electrochemically lithiated silicon
Nature communications, 2015
Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. ...
ACS Nano, 2013
Using electron beam lithography, amorphous Si (a-Si) nanopillars were fabricated with a height of 100 nm and diameters of 100, 200, 300, 500, and 1000 nm. The nanopillars were electrochemically cycled in a 1 M lithium trifluoromethanesulfonate in propylene carbonate electrolyte. In situ atomic force microscopy (AFM) was used to qualitatively and quantitatively examine the morphology evolution of the nanopillars including volume and height changes versus voltage in real-time. In the first cycle, an obvious hysteresis of volume change versus voltage during lithiation and delithiation was measured. The pillars did not crack in the first cycle, but a permanent volume expansion was observed. During subsequent cycles the a-Si roughened and deformed from the initial geometry, and eventually pillars with diameters >200 nm fractured. Furthermore, a degradation of mechanical properties is suggested as the 100 and 200 nm pillars were mechanically eroded by the small contact forces under the AFM probe. Ex situ scanning electron microscopy (SEM) images, combined with analysis of the damage caused by in situ AFM imaging, demonstrate that during cycling, the silicon became porous and structurally unstable compared to as-fabricated pillars. This research highlights that even nanoscale a-Si suffers irreversible mechanical damage during cycling in organic electrolytes.
Nature communications, 2015
Following an explosion of studies of silicon as a negative electrode for Li-ion batteries, the anomalous volumetric changes and fracture of lithiated single Si particles have attracted significant attention in various fields, including mechanics. However, in real batteries, lithiation occurs simultaneously in clusters of Si in a confined medium. Hence, understanding how the individual Si structures interact during lithiation in a closed space is necessary. Here, we demonstrate physical and mechanical interactions of swelling Si structures during lithiation using well-defined Si nanopillar pairs. Ex situ SEM and in situ TEM studies reveal that compressive stresses change the reaction kinetics so that preferential lithiation occurs at free surfaces when the pillars are mechanically clamped. Such mechanical interactions enhance the fracture resistance of lithiated Si by lessening the tensile stress concentrations in Si structures. This study will contribute to improved design of Si str...
Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery
Journal of Power Sources, 2014
Computational study of electrochemical cycling induced film delamination has been undertaken. Current collector mechanical properties significantly influence cycling response. Elasto-plastic current collectors show partial delamination of the thin film. Absence of interfacial delamination in thin Si film on low modulus elastic substrate.