p53 Differentially Inhibits Cell Growth Depending on the Mechanism of Telomere Maintenance (original) (raw)
Related papers
Oncogene, 2003
We describe novel effects of p53 loss on immortal transformation, based upon comparison of immortally transformed human mammary epithelial cell (HMEC) lines lacking functional p53 with closely related p53( þ ) lines. Our previous studies of p53( þ ) immortal HMEC lines indicated that overcoming the stringent replicative senescence step associated with critically short telomeres (agonescence), produced indefinite lifespan lines that maintained growth without immediately expressing telomerase activity. These telomerase(À) 'conditionally immortal' HMEC underwent an additional step, termed conversion, to become fully immortal telomerase( þ ) lines with uniform good growth. The very gradual conversion process was associated with slow heterogeneous growth and high expression of the cyclin-dependent kinase inhibitor p57 Kip2 . We now show that p53 suppresses telomerase activity and is necessary for the p57 expression in early passage p53( þ ) conditionally immortal HMEC lines, and that p53(À/À) lines exhibit telomerase reactivation and attain full immortality much more rapidly. A p53-inhibiting genetic suppressor element introduced into early passages of a conditionally immortal telomerase(À) p53( þ ) HMEC line led to rapid induction of hTERT mRNA, expression of telomerase activity, loss of p57 expression, and quick attainment of uniform good growth. These studies indicate that derangements in p53 function may impact malignant progression through direct effects on the conversion process, a potentially rate-limiting step in HMEC acquisition of uniform unlimited growth potential. These studies also provide evidence that the function of p53 in suppression of telomerase activity is separable from its cell cycle checkpoint function.
Oncogene, 2004
Telomerase activity in tumours is often associated with p53 mutation. Many antitelomerase therapies take advantage of the inability of cells expressing mutant p53 to undergo replicative senescence, since this allows telomere erosion to continue until 'crisis', hence providing the desired cytotoxic effect. However, some tumour types, including breast, melanomas and thyroid, retain wild-type p53 function and the effectiveness of antitelomerase therapies in such tumour cells have not been adequately addressed. To explore this, we made use of two thyroid cancer cell lines K1 and K2, which retain wt p53. Telomere erosion induced by the expression of a dominant-negative (DN) hTERT resulted in delayed onset of growth arrest in K1 and K2 cells, reminiscent of replicative senescence, with low levels of BrdU labelling and apoptosis, associated with high p21 WAF1 and senescence-associated b galactosidase expression. In contrast, abrogation of p53 function by the expression of HPV16 E6 in K1 and K2 cells either at the same time as DNhTERT or just prior to the onset of senescence allowed cells to continue growing until 'crisis'. Likewise, microinjection of a p53 neutralizing antibody into 'senescent' K1 DNhTERT cells permitted re-entry into the cell cycle. We conclude that thyroid tumour cells with wild-type p53 retain an intact p53-mediated growth arrest response to telomere erosion. This raises the intriguing question of why, therefore, p53 mutation is not selected for in such cancers, and also calls into question the therapeutic value of telomerase inhibitors in such cases.
Oncogene, 2000
The p53 tumor suppressor protein inhibits the formation of tumors through induction of cell cycle arrest and/or apoptosis. In the present study we demonstrated that p53 is also a powerful inhibitor of human telomerase reverse transcriptase (hTERT), a key component for telomerase. Activation of either exogenous temperature-sensitive (ts) p53 in BL41 Burkitt lymphoma cells or endogenous wild type (wt) p53 at a physiological level in MCF-7 breast carcinoma cells triggered a rapid downregulation of hTERT mRNA expression, independently of the induction of the p53 target gene p21. Co-transfection of an hTERT promoter construct with wt p53 but not mutant p53 in HeLa cells inhibited the hTERT promoter activity. Furthermore, the activation of the hTERT promoter in Drosophila Schneider SL2 cells was completely dependent on the ectopic expression of Sp1 and was abrogated by wt p53. Finally, wt p53 inhibited Sp1 binding to the hTERT proximal promoter by forming a p53-Sp1 complex. Since activation of telomerase, widely observed in human tumor cell lines and primary tumors, is a critical step in tumorigenesis, wt p53-triggered inhibition of hTERT/telomerase expression may re¯ect yet another mechanism of p53mediated tumor suppression. Our ®ndings provide new insights into both the biological function of p53 and the regulation of hTERT/telomerase expression. Oncogene (2000) 19, 5123 ± 5133.
Molecular and Cellular Biology, 2002
Telomerase reintroduction in adult somatic tissues is envisioned as a way to extend their proliferative capacity. It is still a question, however, whether constitutive telomerase expression in adult tissues impacts the normal aging and spontaneous cancer incidence of an organism. Here, we studied the aging and spontaneous cancer incidence of mice with transgenic telomerase expression in a wide range of adult tissues, K5-Tert mice. For this, we maintained large colonies of K5-Tert mice for more than 2 years. K5-Tert mice showed a decreased life span compared to wild-type cohorts associated with a higher incidence of preneoplastic and neoplastic lesions in various tissue types. Neoplasias in K5-Tert mice were coincident with transgene expression in the affected tissues. These observations suggest that high telomerase activity may cooperate with genetic alterations that occur with age to promote tumorigenesis. Indeed, we demonstrate here that increased cancer incidence and the reduced ...
Cureus, 2020
Aging is defined as progressive physiological alterations in an organism that lead to senescence. In response to stress, when proliferative-competent cells undergo permanent, irreversible growth arrest (like replicative dividing limit, oncogene activation, oxidative stress, or deoxyribonucleic acid (DNA) damage), it is termed as cellular senescence. Biomarkers p53, telomerase, and other inflammatory cytokines have a vital link with senescence, and directed use of these markers might be useful in manipulating cancer and the aging process. We included studies related to topics ' accelerated aging due to cancer', telomerase's relation to Aging and Cancer, p53's relation to Aging and Cancer, Atherosclerosis and Cancer from Search databases like PubMed and Google Scholar. We relied on peer-reviewed articles and included literature from the last 10 years written in the English language. Degenerative diseases in humans are usually linked to atherosclerosis, and atherosclerosis is associated with short leukocyte telomere length. Cancer itself and its treatment are linked with accelerated aging by causing progressive shortening of telomeres during cell replication, resulting in cell death. Gene p53 is known to have a dual effect that works as a tumor suppressor and has pro-aging side effects. In experimental studies, when p53 overcomes multiple regulatory mechanisms controlling its activity, then only the pro-aging side effects of p53 manifested. This might be a potential key for treating cancer without causing the side-effects of aging. In this review, we aim to explain and summarize the interdependent nature of p53, telomeres, and other conventional mechanisms of aging and cancer like inflammation, oxidative stress, uncontrolled proliferation, angiogenesis, micro ribonucleic acids (RNAs), and apoptosis, with a more synergistic approach that can help in developing new therapeutics and play a potential role in shaping modern human lifespan and revolutionize cancer treatment.
P53 in Recombination and Repair
Cell Death & Differentiation, 2006
Convergent studies demonstrated that p53 regulates homologous recombination (HR) independently of its classic tumour-suppressor functions in transcriptionally transactivating cellular target genes that are implicated in growth control and apoptosis. In this review, we summarise the analyses of the involvement of p53 in spontaneous and double-strand break (DSB)-triggered HR and in alternative DSB repair routes. Molecular characterisation indicated that p53 controls the fidelity of Rad51-dependent HR and represses aberrant processing of replication forks after stalling at unrepaired DNA lesions. These findings established a genome stabilising role of p53 in counteracting errorprone DSB repair. However, recent work has also unveiled a stimulatory role for p53 in topoisomerase I-induced recombinative repair events that may have implications for a gain-offunction phenotype of cancer-related p53 mutants. Additional evidence will be discussed which suggests that p53 and/or p53-regulated gene products also contribute to nucleotide excision, base excision, and mismatch repair.
Increased p53 activity does not accelerate telomere-driven ageing
EMBO reports, 2006
There is a great interest in determining the impact of p53 on ageing and, for this, it is important to discriminate among the known causes of ageing. Telomere loss is a well-established source of age-associated damage, which by itself can recapitulate ageing in mouse models. Here, we have used a genetic approach to interrogate whether p53 contributes to the elimination of telomere-damaged cells and its impact on telomere-driven ageing. We have generated compound mice carrying three functional copies of the p53 gene (super-p53) in a telomerasedeficient background and we have measured the presence of chromosomal abnormalities and DNA damage in several tissues. We have found that the in vivo load of telomere-derived chromosomal damage is significantly decreased in super-p53/ telomerase-null mice compared with normal-p53/telomerase-null mice. Interestingly, the presence of extra p53 activity neither accelerates nor delays telomere-driven ageing. From these observations, we conclude that p53 has an active role in eliminating telomere-damaged cells, and we exclude the possibility of an age-promoting effect of p53 on telomere-driven ageing.
Nucleic Acids Research, 2004
For cells on the path to carcinogenesis, the key to unlimited growth potential lies in overcoming the steady loss of telomeric sequence commonly referred to as the 'end-replication problem' that occurs with each cell division. Most human tumors have reactivated telomerase, a specialized reverse transcriptase that directs RNA-templated addition of telomeric repeats on to chromosomal termini. However,~10% of tumors maintain their telomeres through a recombination-based mechanism, termed alternative lengthening of telomeres or ALT. Here we demonstrate that telomeric DNA undergoes a high rate of a particular type of recombination visualized cytogenetically as sister chromatid exchange (SCE), and that this rate is dependent on genotype. A novel model of ALT is presented in which it is argued that telomeric exchanges, if they are unequal and occur at a sufficiently high frequency, will allow cells to proliferate indefinitely without polymerase-mediated extension of telomeric sequence.