Mathai-Quillen formulation of twisted N = 4 supersymmetric gauge theories in four dimensions (original) (raw)

Duality in twisted = 4 supersymmetric gauge theories in four dimensions

Carlos Alberto lozano

Nuclear Physics B, 1999

View PDFchevron_right

Duality In Topological Quantum Field Theories

Carlos Alberto lozano

Arxiv preprint hep-th/9907123, 1999

View PDFchevron_right

Lectures on topological quantum field theory

Carlos Alberto lozano

1998

View PDFchevron_right

Quantum 4d Yang-Mills theory and time-reversal symmetric 5d higher-gauge topological field theory

Yunqin Zheng

Physical Review D, 2019

View PDFchevron_right

Morphisms between supersymmetric and topological quantum field theories

David Kastor

Physics Letters B, 1990

View PDFchevron_right

Lectures In Topological Quantum Field Theory

Carlos Alberto lozano

Arxiv preprint hep-th/9709192, 1997

View PDFchevron_right

Three-dimensional topological quantum field theory of Witten type

Bogusław Broda

1999

View PDFchevron_right

in Five Dimensional Topological Gauge Theories

Yui Noma

2016

View PDFchevron_right

Duality in the Context of Topological Quantum Field Theory

Carlos Alberto lozano

1998

View PDFchevron_right

Issues in topological gauge theory

Nikita Nekrasov, Samson Shatashvili

Nuclear Physics B, 1998

View PDFchevron_right

Aspects of NT ⩾ 2 topological gauge theories and D-branes

Matthias Blau

Nuclear Physics B, 1997

View PDFchevron_right

Topological Gauge Theories from Supersymmetric Quantum Mechanics on Spaces of Connections

George Thompson

International Journal of Modern Physics A, 1993

View PDFchevron_right

Multi-instantons, supersymmetry and topological field theories

Alessandro Tanzini, Francesco Fucito

Physics Letters B, 2000

View PDFchevron_right

Quantum Yang-Mills 4d Theory and Time-Reversal Symmetric 5d Higher-Gauge TQFT: Anyonic-String/Brane Braiding Statistics to Topological Link Invariants

Juven Wang

2019

View PDFchevron_right

Topological twist in four dimensions, R-duality and hyperinstantons

Pietro Fre

Nuclear Physics B, 1993

View PDFchevron_right

Two-dimensional topological Yang-Mills theory

Boguslaw Broda

Physics Letters B, 1990

View PDFchevron_right

Multi-instantons, supersymmetry and topological field theories,” Phys

Diego Bellisai

2000

View PDFchevron_right

Topological Yang-Mills Theories

Clisthenis Constantinidis

2003

View PDFchevron_right

Topological Symmetry of forms, N = 1 Supersymmetry and S-duality on

Alessandro Tanzini

2005

View PDFchevron_right

Twisted N =2 Supersymmetry with Central Charge and Equivariant Cohomology

Jose Labastida

Communications in Mathematical Physics, 1997

View PDFchevron_right

Four-dimensional topological Yang-Mills theory. Symmetries, local observables, Wilson loops and confinement

Antti Niemi

Physics Letters B, 1990

View PDFchevron_right

Four-Dimensional Yang-Mills Theory as a Deformation of Topological BF Theory

Francesco Fucito

Communications in Mathematical Physics, 1998

View PDFchevron_right

8 Four-Dimensional Yang–Mills Theory as a Deformation of Topological BF Theory

M. Zeni

2016

View PDFchevron_right

On the role of vector supersymmetry in topological field theory

Olivier Dos Reis

arXiv preprint hep-th/9502033, 1995

View PDFchevron_right

ROM2F/2000/04 DFPD00/TH/09 Instanton Calculus, Topological Field Theories and N = 2 Super Yang–Mills Theories

Diego Bellisai

2000

View PDFchevron_right

$$(3+1)$$ ( 3 + 1 ) -Dimensional topologically massive 2-form gauge theory: geometrical superfield approach

Debmalya Mukhopadhyay

The European Physical Journal C

View PDFchevron_right

Topological matter in four dimensions

Mario Alvarez

Nuclear Physics B, 1995

View PDFchevron_right

Instanton calculus, topological field theories and N = 2 super Yang-Mills theories

Alessandro Tanzini, Francesco Fucito

Journal of High Energy Physics, 2000

View PDFchevron_right

Quantum Geometry and Quiver Gauge Theories

Samson Shatashvili

Communications in Mathematical Physics

View PDFchevron_right

N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

Matthias Blau

Communications in Mathematical Physics, 1993

View PDFchevron_right