Delay in Hand Grasp Release in Individuals with Post-stroke Hemiparesis (original) (raw)

Delays in Grip Initiation and Termination in Persons With Stroke: Effects of Arm Support and Active Muscle Stretch Exercise

Journal of Neurophysiology, 2009

Stroke survivors' difficulty in releasing grasped objects may be attributable not only to impaired finger extension but also to delays in terminating activity in the gripping flexor muscles. This study was undertaken 1) to quantify the time needed to initiate and terminate grip muscular activity following stroke and 2) to examine effects of arm support, grip location, and active muscle stretch on the delays recorded in the paretic hand. Delays in initiation and termination of finger flexor muscle activity in response to an auditory stimulus were measured for both paretic and nonparetic hands of ten stroke survivors with chronic hemiparesis and the dominant hand of five neurologically intact subjects. Additionally, the delays for the paretic hand were recorded while an external arm support was used and after 30 min of active muscle stretch. We found that delays in grip initiation and termination were greatest for the paretic hand (1.9 and 5.0 s), followed by the nonparetic hand (...

Hand function and type of grasp used by chronic stroke individuals in actual environment

Topics in Stroke Rehabilitation, 2019

Background: Knowledge of paretic upper limb (UL) use in the actual environment is crucial for defining treatment strategies that are likely to enhance performance. Objective: To quantify the hand function and type of grasp performed in the actual environment following stroke and determine if any differences in hand use are dependent on the degree of motor impairment. Method: This cross-sectional study enrolled 41 participants with chronic hemiparesis classified as having either mild (11), moderate (20), or severe (10) UL impairment. A behavioral map was used while observing hand use over the 4-h experimental period, during which we checked: activityunimanual, bimanual or non-task-related; hand functionstabilization, manipulation, reach-to-grasp, gesture, support or push; and type of graspdigital or whole-hand. Results: Participants with severe impairment did not use the paretic UL spontaneously; analyzing the moderate and mild subgroup together, the predominant UL hand functions were stabilization and manipulation, the paretic UL performs the stabilization function using the whole-hand more frequently (71.2%) than digital (28.8%) grasp. In the subgroup analysis, the paretic and non-paretic UL in the moderate and the paretic UL in the mild subgroup perform the whole-hand stabilization more frequently than digital. Digital grasp is more accomplished by the non-paretic UL in reach-to-grasp hand function, particularly in the mild subgroup. Conclusion: The paretic UL is predominantly employed for stabilization function using a wholehand grasp. The type of grasp in the actual environment is affected by motor impairment, and greater motor impairment leads to the performance of less complex tasks.

Compensation for distal impairments of grasping in adults with hemiparesis

Experimental Brain Research, 2004

Previous studies have shown that patients with arm and hand paresis following stroke recruit an additional degree of freedom (the trunk) to transport the hand during reaching and use alternative strategies for grasping. The few studies of grasping parameters of the impaired hand have been case studies mainly focusing on describing grasping in the presence of particular impairments such as hemi-neglect or optic ataxia and have not focussed on the role of the trunk in prehension. We hypothesized that the trunk movement not only ensures the transport of the hand to the object, but it also assists in orienting the hand for grasping when distal deficits are present. Nineteen patients with chronic hemiparesis and seven healthy subjects participated in the study. Patients had sustained a stroke of non-traumatic origin 6-82 months previously (31 ±22 months) and had mild or moderate to severe arm paresis. Using a whole hand grasp, subjects reached and grasped a cylinder (35 mm) that was placed sagittally (T1) or at a 45°angle to the sagittal midline in the ipsilateral workspace (T2), both at about 90% arm's length (10 trials per target). Eight infrared emitting diodes were placed on bony landmarks of the hand, arm and trunk and kinematic data were recorded by an optical motion analysis system (Optotrak) for 2-5 s at 120 Hz. Hand position and orientation were recorded by a Fastrack Polhemus system.

Functional classification of grasp strategies used by hemiplegic patients

PloS one, 2017

This study aimed to identify and qualify grasp-types used by patients with stroke and determine the clinical parameters that could explain the use of each grasp. Thirty-eight patients with chronic stroke-related hemiparesis and a range of motor and functional capacities (17 females and 21 males, aged 25-78), and 10 healthy subjects were included. Four objects were used (tissue packet, teaspoon, bottle and tennis ball). Participants were instructed to "grasp the object as if you are going to use it". Three trials were video-recorded for each object. A total of 456 grasps were analysed and rated using a custom-designed Functional Grasp Scale. Eight grasp-types were identified from the analysis: healthy subjects used Multi-pulpar, Pluri-digital, Lateral-pinch and Palmar grasps (Standard Grasps). Patients used the same grasps with in addition Digito-palmar, Raking, Ulnar and Interdigital grasps (Alternative Grasps). Only patients with a moderate or relatively good functional a...

Upper extremity muscle activation during recovery of reaching in subjects with post-stroke hemiparesis

Clinical Neurophysiology, 2007

Objective-To investigate upper extremity muscle activation and recovery during the first few months after stroke. Methods-Subjects with hemiparesis following stroke were studied performing a reaching task at an acute time point (mean = 9 days post-stroke) and then again at a subacute time point (mean = 109 days post-stroke). We recorded kinematics and electromyographic activity of 6 upper extremity muscles. Results-At the acute time point, the hemiparetic group had delayed muscle onsets, lower modulation ratios, and higher relative levels of muscle activation (%MVIC) during reaching than controls. From the acute to the subacute time points, improvements were noted in all three variables. By the subacute phase, muscle onsets were similar to controls, while modulation ratios remained lower than controls and %MVIC showed a trend toward being greater in the hemiparetic group. Changes in muscle activation were differentially related to changes in reaching performance. Conclusions-Our data show that improvements in muscle timing and decreases in the relative level of volitional activation may underlie improved reaching performance in the early months after stroke. Significance-Given that stroke is one of the leading causes of persistent physical disability, it is important to understand how the ability to activate muscles changes during the early phases of recovery after injury.

Deficits in grasp versus reach during acute hemiparesis

Experimental Brain Research, 2005

We studied how acute hemiparesis affects the ability to perform purposeful movements of proximal versus distal upper extremity segments. Given the gradient of corticospinal input to the spinal motoneuron pools, we postulated that movement performance requiring distal segment control (grasping) should be more impaired than movement performance requiring proximal segment control (reaching) in people with hemiparesis. We tested subjects with acute hemiparesis and control subjects performing reach and reach-tograsp movements. Three characteristics of movement performance were quantified for each movement: speed, accuracy, and efficiency. For the reach, we calculated peak wrist velocity, endpoint error, and reach path ratio. For the grasp, we calculated peak aperture rate, aperture at touch, and aperture path ratio. To evaluate the relative deficits in reaching versus grasping, performance measures were converted to z-scores using control group means and standard deviations. For both the movements, movement times were longer and performance was more variable in the hemiparetic group compared to the control group. Hemiparetic z-scores indicated that relative deficits in movement speed were small in the two movements, with deficits in grasp being slightly greater than deficits in reach. Relative deficits in accuracy showed a trend for being larger in the reach compared to the grasp, but this difference did not reach statistical significance. In contrast, relative deficits in efficiency were larger in the grasp compared to the reach, with reaching efficiency near the range of normal performance. When considering data across all three movement characteristics, the ability to perform a purposeful movement with the distal segments was not clearly more disrupted than the ability to perform a purposeful movement with the proximal segments in people with acute hemiparesis.

Compensatory Motor Control After Stroke: An Alternative Joint Strategy for Object-Dependent Shaping of Hand Posture

Journal of Neurophysiology, 2010

Efficient grasping requires planned and accurate coordination of finger movements to approximate the shape of an object before contact. In healthy subjects, hand shaping is known to occur early in reach under predominantly feedforward control. In patients with hemiparesis after stroke, execution of coordinated digit motion during grasping is impaired as a result of damage to the corticospinal tract. The question addressed here is whether patients with hemiparesis are able to compensate for their execution deficit with a qualitatively different grasp strategy that still allows them to differentiate hand posture to object shape. Subjects grasped a rectangular, concave, and convex object while wearing an instrumented glove. Reach-to-grasp was divided into three phases based on wrist kinematics: reach acceleration (reach onset to peak horizontal wrist velocity), reach deceleration (peak horizontal wrist velocity to reach offset), and grasp (reach offset to lift-off). Patients showed red...

Using an accelerometer for analyzing a reach-to-grasp movement after stroke

Motriz: Revista de Educação Física, 2013

The purpose of this study was using an accelerometer to access the kinematics of reach-to-grasp movements in subjects with hemiparesis. Eight subjects (59.4 ± 6.9 years old) with chronic hemiparesis (50.9 ± 25.8 months post-stroke) participated in this study. Kinematic assessment was performed using a triaxial accelerometer (EMG Systems, Brazil) attached to the subjects' forearm. Ten reach-to-grasp movements of grabbing a 500ml-size bottle were performed by the subjects with the paretic and the non-paretic upper limbs (ULs). The following space-temporal variables were calculated and used to compare the paretic and non-paretic ULs: movement time (MT), time to reach the peak velocity, absolute and relative (TPV and TPV%MT), relative deceleration duration (DEC%MT), time to peak acceleration (TPA) and peak hand acceleration (PA). Movements were slower in the paretic UL with increased MT, TPA and DEC. The accelerometer allowed to identify of changes in reaching-to-grasp movements of ...